Advanced Compression Methods for Simulation Models in SDM Systems

Matthias Büchse, M. Thiele, C. Löbner, M. Liebscher SCALE GmbH

Data deduplication

Justus Richter, W. Graf

Institut für Statik und Dynamik der Tragwerke, TU Dresden

Mesh compression

Today's global, large-scale car production incurs immense complexity to SDM.

Motivation: SDM dimensions of complexity

Motivation: *location diversity*

Today's global, large-scale car production incurs immense complexity to SDM. Good SDM systems shield you from this complexity as much as possible. This is a hard task!

Motivation: Growing amounts of data/simulations

Today's global, large-scale car production incurs immense complexity to SDM. Good SDM systems shield you from this complexity as much as possible. This is a hard task! So, how do we do it?

Motivation: Broad problem \rightarrow concrete problems

Problem: storage, transfer

- Many variants: high redundancy
- Data deduplication
- Format independent
- Compression ratio: > 3

Problem: mesh visualisation

- High mesh resolution vs. preview
- Mesh compression
- Format specific
- Compression ratio: > 10

Output data

Problem: storage, transfer

SIDACT

- see Stefan Mertler's talk
- Compression ratio: > 3

Data Deduplication

Simulation Data Management workflow

storage 280 MiB storage 280 MiB transfer 280 MiB

Data Deduplication: Approach

Chunking: find block boundaries via rolling checksum Indexing: identify each block with cryptographic hash

Data Deduplication: Results

Data Deduplication: Results

- Deduplication rate
 - 980 GiB real-world SDM data
 - Total deduplication ratio: 1:4

Data Deduplication: Requirements & Challenges

Requirements

- Minimized Storage
- Minimized Transfer
- Performance
- Scalability
- Deletion
- Encryption

Challenges

- Choice of parameters
- Storage organization
- Data integrity
- Concurrency

Roadmap

Done

Incorporated data deduplication into SCALE's SDM client LoCo

Work in progress

- Incorporate into SDM server (2017)
- Test deduplicated transfer (2017)

Mesh Compression → Justus Richter

Objective

visualisation of simulation results via web interface

 \rightarrow mainly transfer of meshes and related data

conventional: storage in plain text, e.g. LS-DYNA Keyword file

Compression of Vertex Coordinates

entropy encoding works fine with predictable distribution

Compression of Vertex Coordinates

entropy encoding works fine with predictable distribution

Geometry Prediction

e.g. parallelogram rule

storing offsets instead of original coordinates

Quantisation q_n

$$q_n: [x_{\min}, x_{\max}] \to \{0, 1, \dots, 2^n - 1\}$$

information loss dependent on bit size *n*

Compression of Connectivity

Degree Encoding

 \rightarrow traversal algorithm

Compression of Connectivity

Degree Encoding

 \rightarrow traversal algorithm

shell meshes based on vertex degree

solid meshes based on edge degree

 \rightarrow different algorithms

Conclusion

- satisfactory compression ratio up to 15, dependant on mesh regularity
- implementation supports all common element types
 - \rightarrow shells, hexahedra, tetrahedra, wedges
- loss in coordinate resolution chosen by bit size of quantisation (optional)

Outlook

- consideration of vertex and element properties (e.g. stresses and strains)
- integration in SDM and post-processing systems
- combination with data deduplication

Institut für Statik und Dynamik der Tragwerke

Advanced Compression Methods

for Simulation Models in SDM Systems

Thank you!

www.tu-dresden.de/isd

