Application of Model Order Reduction Techniques in LS-DYNA

<u>Peter Friedrich</u>, SCALE GmbH Uwe Reuter, TU Dresden Marko Thiele, SCALE GmbH Daniel Weigert, AUDI AG

Outline

- Motivation
- Model Order Reduction
- Reduction Process in LS-DYNA
- Integration into simulation data management
- Example
 - Approximation Quality
 - Computing Time
- Conclusion
- Ongoing work

Motivation

- Large models in automotive crash simulation (~10Mio. elements)
- Many crash simulations during development iteration cycles
- Increased accuracy might not be neccessary (different disciplines)
- Crash models already split in individual parts with clear interfaces
- Reduction of computing time by approximating specific areas
 - Model Order Reduction

P

SCALE

Model order reduction

Reduction Process

SCALE_

Integration into simulation data management

. . .

Step 3 – Automatic Reduction initiated by SDM System

 SDM System
 Compute Node

 Part 1
 Reduction

 1. Include with Master Nodes
 Reduction

 2. Interface only Include
 Reduction

Reduced Matrices

Integration into simulation data management

SCALE

Integration into simulation data management

- Hold Original and Reduced model for several parts of the crash model
- Depending on the discipline (front-crash, rear-crash,...) choosing a combination of original and reduced variants
 - Possible because of modularity and interface modelling

- Offline step already done automatically
- Reduced part can be used multple times (in the same model or in different simulations)
 - \rightarrow More expensive Reduction method becomes viable

Examples: Model

- Clamped Frame: 1212 nodes, 1224 shell elements
- "T": 603 nodes, 608 shell elements
- Linear elastic material model
- Impactor sphere with initial velocity
- Reduction with static condensation and CMS with different numbers of modes

Example: Computing Time

т	DOF	CPU time [s]	DOF change [%]	CPU time change [%]
full	10890	61.26		
static	7326	47.80	-32.7	-21.9
1 mode	7327	48.25	-32.7	-21.2
5 modes	7331	48.39	-32.6	-21.0
100 modes	7426	49.50	-31.8	-19.1

Example: Computing Time

I	DOF	CPU time [s]	DOF change [%]	CPU time change [%]
full	8484	52.81		
static	7326	48.48	-13.6	-8.1
1 mode	7327	50.12	-13.6	-5.0
5 modes	7331	49.28	-13.5	-6.6
100 modes	7426	50.90	-12.4	-3.6

Examples: Computing Time

Reduction of Computing Time (with respect to reference sim.):

	Т	(DOFs: -30%)	I (DOFs: -13%)
static		-22.0%	-8.2%
1 mode		-21.1%	-5.1%
5 modes		-21.0%	-6.6%
100 modes		-19.2%	-3.6%

Conclusion

- General Process to use model order reduction with LS-DYNA:
 - Defining Master nodes; Reduction step; Import of reduced part as superelement
- Component mode synthesis (CMS) can be used to approximate the system response for the chosen academic example
- Approximation quality of CMS heavily depends on number of eigenmodes (also depends on the characteristics of the model)
- Significant computing time reduction can be achieved (depending on model size, with the examined models)
- Integration in existing workflows (e.g. SDM) is crucial to make MOR easily available
- By using a defined interface to connect parts, original parts and reduced parts can be interchanged

Ongoing Work

- Solve problems that occured
- Outsource reduction step from LS-DYNA to external tools
 - Interface for system matrices is available (DMIG format)
- Improve the SDM integration (different reduction variants, scheduling of reduction run, caching,...)
- Using more complex models (more element types, failure, rigid bodies, damping,...)
 - Ultimately apply MOR to Toyota Yaris model

Thank you! SCALE

Modulstrategie: Beispiel Yaris Heckklappe

