
Fakultät Bauingenieurwesen Fakultätsrechenzentrum

Parameter estimation for
spot weld design in
automotive construction

Master Thesis

Student: Akhil Rajasekharan Pillai
Supervisor: Dr.-Ing. habil. Uwe Reuter
Consultant: Dipl.-Ing. Marko Thiele

Dresden, 19.03.2019

Acknowledgment
I wish to express my sincere gratitude to Prof. Dr. -Ing. habil. Uwe Reuter and Dipl.
-Ing. Marko Thiele, for giving me an opportunity to carry out my Master Thesis under
their guidance. I pay sincere gratitude for their time and efforts rendered, through-
out my thesis work. Their excellent suggestions and advice have always helped me in
achieving the objectives for my work.

I would also like to thank SCALE Gmbh managers for their invaluable guidance as
well providing the data needed to achieve the objective of my work, for providing me a
complete working station at their branch in Ingolstadt, for providing licensed softwares
like Animator A4, ANSA and many others.

I would further like to express my profound gratitude to my parents for their wise
counsel. I am grateful to my friends for their support and continuous encouragement
throughout.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 1

2 Mathematical basics 3
2.1 Artificial neural networks . 3

2.1.1 Multilayer perceptron . 4
2.1.2 Learning algorithm of neural network 6
2.1.3 Activation functions . 9
2.1.4 Loss functions . 15

2.2 Convolutional neural networks . 19
2.2.1 Convolution operation . 20
2.2.2 Pooling . 21

2.3 Barycentric coordinates . 22
2.4 Latin hypercube sampling . 24

3 Machine learning approaches for classification of geometric data 25
3.1 Theoretical aspects of 3D geometric data 25

3.1.1 Euclidean-structured data . 25
3.1.2 Non-Euclidean data . 28

3.2 Deep learning on 3D data . 30
3.3 PointNet . 30
3.4 Generation of 3D geometric data from FEM data 34

3.4.1 Extraction of geometry data from FEM data 34
3.4.2 Generation of point clouds . 37

3.5 Geometry classification experiments . 43
3.5.1 Influence of number of points in point cloud 43
3.5.2 Influence of number of training samples 45
3.5.3 Classification capability of PointNet 46
3.5.4 Classification of parts for TOYOTA YARIS model 48
3.5.5 Classification of parts for AUDI model 51

4 Machine learning approaches for estimation of spot weld design 55
4.1 Extraction of spot weld data from FEM data 55
4.2 Identification of part combination’s using PointNet 56

4.2.1 Classification capability for 10 part combinations 56
4.2.2 Identification of part combinations using PointNet-Combi 58

4.3 Spot weld design . 62
4.3.1 Minimum distance between spot welds 62
4.3.2 Contact surface of joining parts 64

4.4 Estimation of minimum distance between spot welds 69
4.4.1 Classification based approach 69
4.4.2 Prediction based approach . 75
4.4.3 Comparison of approaches . 77

4.5 Further outlooks . 81

5 Conclusion 83

References 85

Appendix A FEM data extraction source code 89
A.1 geometry_extraction.py . 89
A.2 spotweld_data_extraction.py . 90

Appendix B Point cloud generation source code 91
B.1 build_dataset .py . 91
B.2 pointcloud_generator .py . 92

Appendix C Neural network for prediction based approach 97

1 Introduction

1.1 Motivation

In automotive production, each automobile has approximately 7,000 to 12,000 spot
welds along with other kinds of connections. The position of the spot weld with re-
spect to the flange and the distance between the spot welds as well as various other
parameters usually vary for each part combination (spot weld design). If these prop-
erties are known, they can be used for automatic generation of spot welds during the
design phase of the product development which is otherwise a cumbersome manual
process. The spot weld design to be determined by the engineer depends on many fac-
tors (input parameters) such as loads and forces that might be applied to the structure,
material combination, geometry of the parts, connection technology and it’s process
parameters. Some of these parameters such as material combination and geometry
of the parts are predefined by the designer or are results of the circumstances such
as loads and forces applied at the connection. The remaining parameters such as
connection technology, process parameters, spot weld distances and flange distance
have to be chosen by the engineer. On the basis of existing designs and with help of
machine learning techniques it may be possible to predict the spot weld design param-
eters like spot weld distance and flange distance. Fortunately the input parameters
and the spot-weld design can supposedly be extracted from a vast amount of FEM
simulation input data available in the Simulation Data Management (SDM) system
LoCo of SCALE GmbH. This data can be the basis for training and benchmarking
new methods for estimating spot weld parameters.

1.2 Objective

In this work, we will try to estimate the distances between spot welds for spot weld
design using machine learning approaches. For a machine learning approach, the first
step would be to collect relevant data required to predict the desired outcome. In our
case the desired outcome is the spot weld design parameter of distance between the spot
welds. In order to predict the desired outcome, we make use of simulation data used for
crash analysis. From the simulation data for crash analysis, we extract the geometry
of the parts and also the spot weld design. From the data of already developed car
model, we can build a model which should be able to provide a good initial estimate for
distance between spot welds. With this model the design engineer has a good initial
estimate of distance between spot welds for different part combinations and hence the
number of design iterations required to reach the optimum values decreases.

In order to address the above mentioned problem, in this work, we start with devel-
oping methods to extract significant input parameters of existing 3D geometries of

1

1 Introduction

individual parts. With this geometric data we address the problem of classification of
3D geometric data. In order to solve the classification problem, we need to develop
methods to express part geometries in specified 3D geometric data which can then be
consumed by a macine learning architecture to predict part identifications. Once we
solve the problem of part identification we move to parameter estimation for spot weld
design. Different approaches will be implemented for the same and evaluated. We will
also perform error-estimation for the predicted spot weld parameter.

2

2 Mathematical basics

This chapter presents the mathematical concepts used in this work in a brief manner to
provide basic understanding to the reader. The subsections cover the basics of Artificial
Neural Networks (ANN’s) and deep learning architectures. We also briefly present
mathematical basis for the concepts applied in this work like Barycentric coordinates
and Latin Hypercube Sampling technique.

2.1 Artificial neural networks

Basic explanations of Artificial Neural Networks (ANNs), on which this subsection is
based, can be found in [1, 2, 3, 4]. The formation of ANNs is an attempt to mathe-
matically model the performance and intuitive capabilities of the human brain. The
functionality of the human brain is essentially based on the interaction between the
brain’s highly cross-linked nerve cells called natural neurons. The communication
within a natural neural network takes place via signals. A neuron serves for receiv-
ing, processing and passing on incoming signals. The signals received from neighboring
nerve cells are summed in the neuron and if this simulation exceeds a particular thresh-
old value, then further signal is activated and transmitted to the adjoining neurons.
This basic structure is imitated by ANNs. The ANNs are then used to realize complex
mappings of input variables on output variables. ANNs mainly consist of cross-linked
computational nodes or artificial neurons and communication takes place via numer-
ical values. An artificial neuron receives numerical values from neighboring neurons
(input neurons), which are combined to form a weighted sum. This determined sum
is then compared with a threshold value (bias) and used as the argument for so called
activation functions. The activation function yields a value (output signal) which is
an input signal for further connected artificial neurons.

A large variety of artificial neural networks exist for widely varying fields of applica-
tion. The rapid increase in computing capabilities has aided the increase of scientific
activity in application of ANNs in different forms to solve diverse real world prob-
lems such as recognition of handwritten characters or autonomous driving to name
a few. ANNs may be subdivided into methods for approximating functions, for clas-
sification purposes and as associative memory units. An important type of artificial
neural network is the multilayer perceptron. Multilayer perceptrons are universally
applicable and hence will be explained in this work to understand the mathematics
behind ANNs.

3

2 Mathematical basics

2.1.1 Multilayer perceptron

A multilayer perceptron is a special type of artificial neural network. The artificial
neurons are arranged in layers. Starting from an input layer, numerical values are
transferred or propagated to an output layer via one or more hidden layers. The
output layer provides the result for the corresponding input data. The input and
output data are usually real numbers. In this work, the explanations for multilayer
perceptron is given with an example of a network with one hidden layer. An extension
to several hidden layers is possible, but for the ease of explaining the mathematics and
for better basic understanding we use network with just one hidden layer. A so called
two-layered (output and hidden layers are only counted) multilayered perceptron is
shown in Figure (1).

Figure 1: Schematic representation of a two-layer multilayer perceptron [4]

A variable xr is assigned to each artificial neuron r of the input layer I . The counters
r = 1, 2, ..., nI denote the number of neurons in the input layer. The task of the input
layer is to receive the input data xr and pass the data to the hidden layer as output
variables oI

r . Each neuron s of the hidden layer H lumps together the input variables
xr weighted by the value wH

rs according to Eq.(2.1)

netH
s =

nI�

r=1
wH

rs · xr =
nI�

r=1
wH

rs · oI
r (2.1)

The counters s = 1, 2, ..., nH denotes the number of neurons in hidden layer. The
intermediate result obtained is referred to as the net input netH

s of the neuron s .
The artificial neurons s maps the net input netH

s onto the output variables oH
s and

transfers these to the output layer with the aid of an activation function fA(·) according
to Eq.(2.2)

oH
s = fA(netH

s) (2.2)

With the aid of the weights w o
st the output variables oH

s of the hidden layer H are
lumped together in each case by the artificial neuron tof the output layer O to yield

4

2.1 Artificial neural networks

net input variables netO
t according to Eq.(2.3)

netO
t =

nH�

s=1
wO

st · oH
s (2.3)

The counters t = 1, 2, ..., nO denote the number of neurons in the output layer. Subse-
quently mapping the net input variables netO

t onto the output variables oO
t according

to Eq.(2.4) provides the result data of the multilayer perceptron.

oO
t = fA(netO

t) (2.4)

In practice, threshold values are specified for individual neurons. These define the
threshold above which the particular neuron becomes (highly) active. The threshold
values θH

s and θO
t for the neurons s = 1, 2, ..., nH and t = 1, 2, ..., nO respectively, may

be accounted for either directly in the activation functions according to Eq.(2.5)

oH
s = fA(netH

s − θH
s) and oO

t = fA(netO
t − θO

t) (2.5)

or by an additional neuron in hidden or input layer. In this case, additional weights
wH

rs (r = nI + 1 and s = 1, 2, ..., nH) and wO
st (s = nH + 1 and t = 1, 2, ..., nO) are used.

The output variables or
I and õ of the additional neurons r = nI + 1 and s = nH + 1,

respectively , are constant in accordance with Eq.(2.6)

oI
r = 1 and oH

s = 1 (2.6)

The threshold values that are given by Eqs.2.7 and 2.8 accounts for the net input
variables netH

s and netO
t of the hidden and output layers.

θH
s = −wH

rs · oI
r with r = nI + 1 and s = 1, 2, ..., nH (2.7)

θO
t = −wO

st · oH
s with s = nH + 1 and t = 1, 2, ..., nO (2.8)

The algorithm formulated for a two-layered multilayer perceptron can be generalized
if several hidden layers are present. Processing of variables in an artificial neuron of
hidden layer is show in Figure (2).

Figure 2: Processing of variables in an artificial neuron [4]

5

2 Mathematical basics

2.1.2 Learning algorithm of neural network

Multilayer preceptrons are used to approximate multidimensional non-linear functions.
They are mainly used to map given input vectors on given target vectors as accurately
as possible and to interpolate in between. Training patterns and training sets are
constructed for this purpose.

A training pattern consists of an input vector x = (x1, ..., xr , ...xnI)T and a target vector
y = (y1, ..., yt , ..., ynO)T . A training set consists of m training patterns and is defined
by the vectors x k = (x1(k), ..., xr(k), ..., xnI (k))T and yk = (y1(k), ..., yt(k), ..., ynO (k))T
with k = 1, 2, ..., m.

For each input vector x k = (x1(k), ..., xr(k), ..., xnI (k))T of the training set, the mul-
tilayer perceptron yields an output vector oO

k = (oO
1 (k), ..., oO

t (k), ..., oO
nO

(k))T . The
output error of the multilayer perceptron is determined by compairing the output vec-
tor oO

k with the known target vector y k with the aid of the square error Ek given by
Eq.(2.9).

Ek = fE (yk , oO
k) (2.9)

= 1
2

nO�

t=1
(y(t , k) − oO(t , k))2 (2.10)

The output error of the multilayer perceptron for the complete training set is defined
as the mean square error MSE according to Eq.2.11.

MSE = 1
m

m�

k=1
fE (yk , oO

k) (2.11)

With the aid of backpropagation algorithm the weights are determined in such a way as
to minimize their mean square error (MSE). The process of optimization of the weights
is referred to as training or learning of the multilayer perceptron. The backpropagation
algorithm will be described briefly in this subsection.

The first step is the initialization of weights of the multilayer perceptron. This is
accomplished usually by randomly assigning real values to them mostly from the in-
terval [−0.01, 0.01]. In the second step a given input vector x k is applied to the input
layer of the multilayer perceptron, and the corresponding output from the network oO

k
is computed. This computed output vector oO

k is compared with the corresponding
given target vector y k and the squared error is determined according to Eq.(2.9). The
next step is the determination of correction weights ΔwO

st (k) and ΔwH
st (k) according

to Eqs.(2.12) and (2.13)

ΔwO
st (k) = −η

∂Ek

∂wO
st

(2.12)

ΔwH
rs (k) = −η

∂Ek

∂wH
rs

(2.13)

6

2.1 Artificial neural networks

The correction weights are defined in each case as being proportional to the partial
derivatives of the errors with respect to weights. In broader sense, the backpropoga-
tion algorithm is equivalent to a gradient descent method. The factor η with η > 0 is
called the learning rate.

The weights can be corrected at different points in the backpropogation algorithm.
In online training the weights wO

st and wH
rs are modified according to Eqs. (2.14) and

(2.15) immediately after the processing of a training pattern. This corresponds to a
descent in the gradient direction of the error function given by Eq. (2.9).

wO
st (new) = wO

st (old) + ΔwO
st (k) (2.14)

wH
rs (new) = wH

rs (old) + ΔwH
rs (k) (2.15)

In offline training the weights wO
st and wH

rs are modified according to Eqs. (2.16) and
(2.17) after taking in account of all given m training patterns.

wO
st (new) = wO

st (old) + 1
m

m�

k=1
ΔwO

st (k) (2.16)

wH
rs (new) = wH

rs (old) + 1
m

m�

k=1
ΔwH

rs (k) (2.17)

The determination of the partial derivatives in Eqs. (2.12) and (2.13) requires a
distinction between the hidden layers and output layer [1, 2, 4].

The computation of partial derivatives ∂Ek
∂wO

st
and ∂Ek

∂wH
rs

will be described concisely in this
work. The reader is refereed to [4] for detailed explanations of the calculation of these
partial derivatives.

In order to compute the partial derivative ∂Ek
∂wO

st
of the error Ek with respect to the

elements of the output layer weights, the chain rule is applied according to Eq.(2.18)
must be applied.

∂Ek

∂wO
st

= ∂E
∂netO(t)

∂netO(t)
∂wO(st) (2.18)

Using Eq (2.3) , the term ∂netO (t)
∂wO (st) can be simplied into Eq. (2.19)

∂netO(t)
∂wO(st) = oH (s) (2.19)

and according to the usual notation adopted in literature, the abbreviation δO(t) is
used for the term ∂E

∂netO (t) and is given by Eq (2.20)

δO(t) = − ∂E
∂netO(t) = −(y(t) − oO(t))f �

A(netO(t) (2.20)

Using the above equation the correction weights ΔwO
st can then be computed by means

of Eq. (2.21)
ΔwO

st = η · δO(t) · oH (s) (2.21)

7

2 Mathematical basics

Now similarly in order to compute the partial derivatives ∂Ek
∂wH

rs
of the errors Ek with

respect to the elements of the weights of the hidden layer the chain rule according to
Eq. (2.22)

∂Ek

∂wH (rs) = ∂E
∂netH (s)

∂netH (s)
∂wH (rs) (2.22)

Similar to the procedure applied for the output layer but using Eq. (2.1), Eq (2.22)
simplifies as :

∂Ek

∂wH (rs) = ∂E
∂netH (s)o

I (r) (2.23)

Analogous to the output layer, the abbreviated notation δH (s) is used for the term
∂E

∂netH (s) in Eq (2.23), thereby resulting in Eq (2.24)

δH (s) = − ∂E
∂netH (s) = f

�
A(netH (s))

nO�

t � =1
δO(t �)wO(st �) (2.24)

The correction weights ΔwH
rs for the hidden layer are thus given by Eq. (2.25)

ΔwH
rs = η · δH (s) · oI (r) (2.25)

The δO(t) terms of the output layer are necessary in order to determine the δH (s)
terms according to Eq. (2.24). For this reason the modification of the correction
weights always begins with the output layer and proceeds in the direction of the input
layer (backpropogation).

Since backpropogation algorithm is de facto equivalent to a gradient decent method,
the problems associated with gradient descent methods must be avoided by applying
suitable strategies. The greatest danger in gradient descent methods is that is not able
to depart from local minimum and on the other hand it is possible to depart from a
detected global minimum in favor of a suboptimum minimum. Moreover, flat plateaus
or steep ravines in the error function given by Eq. (2.9) may lead to stagnation or
oscillation of the learning process. When applying the backpropogation algorithm the
damping or elimination of these problems can be achieved by a simple modification of
the method. An proved possibility is the use of a momentum term γ. The corrected
weights Δwi given by Eqs. (2.12) and (2.13) in learning step i are thereby supple-
mented by the corresponding correction weights Δw(i−1) of the (i −1)-th learning step
according to Eq. (2.26).

Δwi = η
∂E
∂w

+ γΔw(i−1) (2.26)

Introduction of the momentum γ counteracts stagnations on flat plateaus as well as
oscillations between steeply descending regions of the error function. Values between
0 and 1 are recommended for the momentum γ. A random assignment of values of
learning rate η and the momentum γ is recommended in each learning step i . The
choice of η is highly dependent on the given training data and the architecture of the
artificial neural network.

8

2.1 Artificial neural networks

2.1.3 Activation functions

An activation function sets the output behavior of each neuron in an artificial neural
network according to Eq. 2.2. They basically decide whether a neuron should be
activated or not i.e whether the information the neuron is receiving is relevant for
the desired output. Activation functions are crucial to basic architectures of artificial
neural networks because they introduce non-linear properties to the network. This en-
ables the artificial neural network to learn from complex, non-linear mappings between
input and response variables. In this work, some basic and commonly used activation
functions will be described briefly.

Binary step function

The binary step function is extremely simple. It can be applied while creating a binary
classifier as we would simply require to say yes or no for a single class. It would either
activate the neuron or simply leave it to zero. The function is visualized in Figure (3)
and expressed mathematically as

f (x) =

0 for x < 0
1 for x > 1

(2.27)

−1.0 −0.5 0.5 1.0

�

1

�(�)

Figure 3: Binary step function

The function is more theoretical since in most cases one would be classifying the data
into multiple classes than just a single class and this activation function will not be
able to achieve it. Also the gradient of binary step function is zero

f �(x) = 0

which is not useful during back-propogation as the gradients of activation functions
are used for error calculations to improve and optimize results.

9

2 Mathematical basics

Linear function

A linear step function is defined as

f (x) = ax (2.28)

−1.0 −0.5 0.5 1.0

�

−2

−1

1

2

�(�)

Figure 4: Linear function

We have taken a = 2 in Figure (4). Here the activation value is proportional to
the input value. This can be applied to various neurons and multiple neurons can
be activated at the same time. In case of multiple classes, we can choose from the
one which has the maximum value. However the derivative of the linear function is a
constant

f �(x) = a

This indicates that every time we execute back-propogation, the gradient would be
the same and we would not be achieving any improvement in error since the gradient
is pretty much the same. Thus irrespective of the number of hidden layers the final
output will always be a linear transformation of the input. This is not desirable for
classifying complex multi-class problems.

Sigmoid function

Sigmoid function is a widely used activation and is mathematically expressed as

f (x) = 1
1 + e−x (2.29)

10

2.1 Artificial neural networks

−10 −5 −1 0 1 5 10

�

1

�(�)

Figure 5: Sigmoid function

From Figure (5) we can see that the function is smooth and it is also continuously
differentiable. The major advantage it has over both binary step and linear functions is
that it is non-linear. This essentially means that when we have multiple neurons with
sigmoid activation function, their output would be non-linear as well. The function
values have domain of all real numbers, with return value monotonically increasing
from 0 to 1. The gradient of the function is very high between the interval [−3, 3] but
gets much flatter in other regions. In this range small changes in x would bring about
large changes in value of f (x). So the function essentially tries to push f (x) values
towards extremes which is a very desirable quality when we are trying to classify the
values to a particular class. On inspection of the gradient of the sigmoid function in
Figure (6) we observe it’s smooth and dependent on x . This means error can be back
propagated easily and the weights can be updated accordingly.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

�

0.1

0.2

�(�)

Figure 6: Gradient of sigmoid function

11

2 Mathematical basics

Sigmoid activation functions are widely used today for many problems but still have
problems that we need to address. The function is pretty flat in [− ∝, −3) and (3,∝]
regions and once the functions falls in this regions, the gradients become very small.
This means the gradient is approaching zero and the network is not really learning
anything. Another problem that sigmoid function suffers is that the function values
range is [0, 1] which means it is not symmetric around the origin and the values received
are all positive. It may not be desirable at all times that the values going to the next
neuron to be all of the same sign. This can be addressed by scaling the sigmoid
function which is explained in next part.

Tanh function

The tanh function is very similar to sigmoid function, it actually a scaled version of
the sigmoid function. Tanh works similar to the sigmoid function but is symmetric
over the origin as shown in Figure (7). It can be mathematically expressed as

f (x) = tanh(x) = ex − e−x

ex + e−x (2.30)

−10 −5 0 5 10

�

−1.0

−0.5

0.5

1.0

�(�)

Figure 7: Tanh function

It is continuous and differentiable at all points, also it solves our problem of all values
being in the same region in case of sigmoid function. The function as one can see is
non-linear so we can easily propagate the errors. The gradient of the tanh function
is steeper as compared to sigmoid function (Figure (8)). Hence our choice of using
sigmoid or tanh would basically depend on the requirement of gradient in the problem
statement. We still have the problem of vanishing gradient as in case of sigmoid
function.

12

2.1 Artificial neural networks

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

�

1

�(�)

�������

����

Figure 8: Gradient of Tanh function compared to sigmoid function

ReLU function

The ReLU function is the Rectified Linear Unit and is the most widely used activation
function. It is mathematically defined as

f (x) = max(0, x) (2.31)

−10 −5 0 5 10

�

5

10

�(�)

Figure 9: ReLU function

It can be graphically represented as in Figure (9). ReLU function is non-linear and
we can easily back propagate the errors and have multiple layers of neurons being
activated by the ReLU function. The main advantage of using the ReLU function over
other activation function is that it does not activate all the neurons at the same time.
If we look closely at the ReLU function, when the input is negative it will transform
it to zero and thus the neuron will not get activated. This means that at a time only
a few neurons are activated making the network sparse, which is efficient and easy for

13

2 Mathematical basics

numerical computation. Figure (10) shows the gradient of ReLU function. We observe
ReLU also falls prey to the gradients moving towards zero. If we look at the negative
side of the graph, the gradient is zero, which means for activation’s in that region
would result in zero gradients and consequently weights would not be updated during
backpropogation. This can create dead neurons which are never activated.

−10 −5 0 5 10

�

1

�(�)

Figure 10: Gradient of ReLU function

In order to circumvent this problem an improved version called Leaky ReLU function
can be used. In this instead of defining ReLU function as zero for x < 0, we define it
as a small linear component of x . It is expressed mathematically as

f (x) =

ax for x < 0
x for x > 0

(2.32)

In Leaky ReLU we have simply replaced the horizontal line in Figure (9) with a non-
zero, non-horizontal line. Here a is a small value like 0.01 or so. The main advantage
of replacing the horizontal line is to remove the zero gradient. In leaky ReLU, the
gradient on negative side of the graph is non-zero and hence we no longer encounter
dead neurons. The gradient of leaky ReLU would look like in Figure .

Similar to leaky ReLU function, we also have Parameterised ReLU function. It is
defined similar to leaky ReLU, but the difference is that the parameter a in Eq (2.32)
is a trainable parameter. The artificial neural network as learns the value of a for
faster and optimum convergence. The Parameterised ReLU function is used when
leaky ReLU functions fails to solve the problem of dead neurons which leads to relevant
information not being passed to next layer in a meaningful manner.

14

2.1 Artificial neural networks

2.1.4 Loss functions

A loss function is a measure of “how good” a neural network did with respect to it’s
given training samples and the expected output. It is a single value, not a vector,
because it rates how good the neural network did as a whole. In Subsection 2.1.2
we have seen how artificial neural networks use loss functions for learning. In this
subsection, mathematical expressions of several commonly used loss functions will be
explained briefly. In order to improve transparency and for ease of understanding, ŷ
is the predicted value by the artificial neural network, y is the target vector and the
loss function is represented by E . For detailed mathematical explanation, the reader
is referred to [5] . This subsection gives comprehensive explanation about several
commonly used loss functions.

Mean squared error

Mean Squared Error (MSE), or quadratic loss, is widely used in linear regression as
a performance measure, and the method of minimizing MSE is called Ordinary Least
Square (OLS). The basic principle of OLS is that the optimized fitting line should be
a line which minimizes the sum of distance of each point to the regression line. The
standard form of MSE loss function is defined as

E = 1
m

m�

i=1
(yi − �yi)2 (2.33)

where (yi − �yi) is named as residual, and the target of MSE loss function is to minimize
the residual sum of squares. When we use Sigmoid activation fucntion, the quadratic
loss function would suffer from the problem of slow convergence (learning speed).

Mean squared logarithmic error

Mean Squared logarithmic Error (MSLE) loss function is a variant of MSE, which is
defined as

E = 1
m

m�

i=1
(log(yi + 1) − log(ŷi + 1))2 (2.34)

MSLE actually measures the change in variance. It is usually used when we do not
want to penalize huge differences in the predicted and the actual values when both
predicted and true values are huge numbers. It penalizes under-estimates more than
over estimates.

15

2 Mathematical basics

L2

L2 loss function is the square of the L2 norm of difference between actual value and
predicted value. It is mathematically similar to MSE, but we do not have division by
m, it is computed by

E =
m�

i=1
(yi − �yi)2 (2.35)

Mean absolute error

Mean Absolute Error (MAE) is a quantity to measure how close predictions are to the
actual targets, which is computed by

E = 1
m

m�

i=1
| yi − �yi | (2.36)

where | · | denotes the absolute value. Even though both MSE and MAE are used
in predictive modeling, there are several differences between them. MSE has nice
mathematical properties which makes it easier to compute gradient unlike MAE, which
requires complicated tools like linear programming for gradient computation. Large
errors have relatively greater influence on MSE than smaller errors because of square
function. MAE is robust to outliers since it does not make use of square function.

L1

L1 loss function is sum of absolute errors of the difference between actual value and
predicted value. Similar to relation between MSE and L2, L1 is mathematically similar
to MAE, only we don not have division with m. It is defined as

E =
m�

i=1
| yi − �yi | (2.37)

Kullback Leibler (KL) divergence

KL Divergence, also known as relative entropy, is a measure of how one probability
distribution diverges from second expected probability distribution. KL divergence
loss functions is computed by

E = 1
m

m�

i=1
DKL(yi

�
�yi)

= 1
m

m�

i=1

�
yi · log

�
yi

�yi

��

= 1
m

m�

i=1
(yi · log (yi)) − 1

m

m�

i=1
(yi · log (�yi))

(2.38)

16

2.1 Artificial neural networks

where the first term is entropy and second term is cross entropy (another kind of
loss function which will be explained later). KL divergence is a distribution-wise
asymmetric measure and thus does not qualify as a statistical metric of spread. In
a simple case, a KL divergence of 0 indicates that we can expect similar, if not the
same, behavior of two different distributions, while a KL divergence of 1 indicates that
the two distributions behave in such a different manner that the expectation given the
first distribution approaches zero.

Cross entropy

Cross Entropy is commonly used in binary classification (labels are assumed to take
values 0 or 1) as loss function (For multi-classification, we use Multi-Class Cross En-
tropy), which is computed by

E = − 1
m

m�

i=1
[yi log (�yi) + (1 − yi) log (1 − �yi)] (2.39)

Cross entropy measures the divergence between two probability distribution. If cross
entropy is large, it means that the difference between two distribution is large, while
if cross entropy is small, then the two distributions are similar to each other. We have
already seen that MSE suffers from slow convergence when using sigmoid activation
function but cross entropy does not have such a problem with sigmoid activation
function.

Negative logarithmic likelihood

Negative Log Likelihood loss function is widely used in classifiers, when the model
outputs a probability for each class rather than just the most likely class. It is “soft”
measurement of accuracy that incorporates the idea of probabilistic confidence. Neg-
ative log likelihood is computed by

E = − 1
m

m�

i=1
log (�yi) (2.40)

Poisson

Poisson loss function is a measure of how the predicted distribution diverges from
the expected distribution. The Poisson as a loss function is a variant from Poisson
Distribution, which is widely used for modeling count data. The Poisson loss function
is computed by

E = 1
m

m�

i=1
(�yi − yi · log (�yi)) (2.41)

17

2 Mathematical basics

Cosine proximity

Cosine Proximity loss function computes the cosine proximity between predicted value
and actual value, which is defined as

E = − y · ŷ
� y �2 · � ŷ �2 = −

�m
i=1 yi · �yi��m

i=1 (yi)2 ·
��m

i=1 (�yi)2
(2.42)

where y = {y1, y2, . . . , ym} ∈ Rm , and ŷ = {ŷ1, �y2, . . . , �ym} ∈ Rm . It is same as Cosine
Similarity, which is a measure of similarity between two non-zero vectors of an inner
product space that measures the cosine of the angle between them. In this case, the
unit vectors are maximally “similar” if they are parallel and maximally “dissimilar” if
they are orthogonal.

Hinge

Hinge Loss, also known as max-margin objective, is a loss function mainly used for
training classifiers. The hinge loss is used for “maximum-margin” classification, most
notably for Support Vector Machines (SVMs). It is defined as

E = 1
m

m�

i=1
max (0, 1 − yi · �yi) (2.43)

Here �yi is the “raw” output of the classifier’s decision function and not the predicted
class label.

18

2.2 Convolutional neural networks

2.2 Convolutional neural networks

Convolutional networks [6], also known as convolutional neural networks, or CNN’s,
are a specialized kind of artificial neural network for processing data that have a known
grid like topology. Examples of data on which CNN’s can be employed include time
series data, which can be thought of as 1-D taking samples at regular time intervals,
and image data which can be thought of as a 2-d grid of pixels. The name “convolu-
tional neural networks” indicates that the network employs a mathematical operation
called convolution. Convolutional neural networks are simply neural networks that use
convolution in place of general matrix multiplication in at least one of it’s layer. In this
subsection, we first describe what convolution is. Next, we describe an operation called
pooling, which almost all convolutional networks employ. Research into convolutional
network architecture proceeds so rapidly that we have a new best architecture for a
given benchmark announced every few months, making it impractical to to describe
the best architecture. However, all the architectures have mainly been composed of
the building blocks described in this section. A typical layer of a convolutional network
consists of three stages as shown in Figure (11). In the first step, a layer performs
several convolutions in parallel to produce a set of linear activation’s. In the sec-
ond step, each linear activation is run through a nonlinear activation function, mostly
the rectified linear activation function. This step is sometimes called the detector
layer. In the third step, we use a pooling function to modify the output of the layer
further.

Input to layers

Convolution layer:
A ine transform

Detector layer : Nonlinearity
e.g., recti ed linear

Pooling layer

Next layer

Figure 11: Components of typical convolutional neural network layer

19

2 Mathematical basics

2.2.1 Convolution operation

Convolution is an operation on two functions of a real-valued argument. To better
understand the definition of convolution, we make use of an example of two func-
tions.

Suppose we are tracking the location of a body with a laser sensor. The sensor provides
a single output x (t), the position of the body at time t , where both x and t are
real valued. Assume that our sensor is somewhat noisy, so to obtain a less noisy
estimate of the body’s position, we can average several measurements. To make recent
measurements more relevant we will employ a weighted average that gives more weight
to recent measurements. We can also do this with a weighting function w (a), where a
is the weight of the measurement. When we apply such a weighted average operation
at every moment, we obtain a new function s providing a smoothed estimate of the
position of the body.

s (t) =
�

x (a) w (t − a) da (2.44)

This operation is called convolution. The convolution operation is typically denoted
with asterisk:

s (t) = (x ∗ w) (t) (2.45)

In our example, w has certain limitations which are particular for the example only. In
general, convolution is defined for any functions for which the above integral is defined
and may be used for other purposes besides taking weighted averages. In convolutional
neural network terminology, the first argument (in our example, the function x) to
the convolution is often referred to as the input, and the second argument (in our
example, the function w) as the kernal. The output is often referred to as the feature
maps.

Convolution leverages three important ideas that can help improve a machine learning
system: sparse interactions, parameter sharing and equivariant representa-
tions [7]. We will describe each of these ideas briefly.

Traditional neural networks employ matrix multiplication of a matrix of parameters
with a separate parameter describing the interaction between each input and output
unit. This indicates that every output unit interacts with every input unit. Convo-
lutional networks, however, typically employ sparse interactions (also referred to
as sparse connectivity or sparse weights). This is accomplished by making the
kernel smaller than the input. To understand this concept let us take an example of
processing an image. The image might have thousands or millions of pixels, but we
can detect small, meaningful features such as edges or curves with kernels that occupy
only tens or hundreds of pixels. This would mean that we only need to store fewer
parameters, which reduces the memory requirements of the model and improves it’s
statistical efficiency. It would also mean that computing the output requires fewer
operations. Usually this improvements in efficiency is quite large. Suppose if there are
m inputs and n outputs, then matrix multiplication requires m × n parameters, and
the algorithms used in practice have O(m × n) run time. If we limit the number of
connections each output may have to k , then the sparsely connected approach requires

20

2.2 Convolutional neural networks

only k × n parameters and O(k × n) run time. For many practical applications, it
is possible to obtain good performance on the machine learning task while keeping k
several orders of magnitude smaller than m.

Parameter sharing refers to using same parameter for more than one function in a
model. In a traditional neural net, each element of the weight matrix is exactly used
once when computing the output of the layer. It is multiplied by one element of the
input and never used again. Another term one might encounter of parameter sharing
in various literature’s is that a network has tied weights, because the value of the
weight applied to one input is tied to the value of a weight applied elsewhere. In a
Convolutional neural network, each member of the kernel is used in every position of
the input. This parameter sharing used by convolution operation means that we learn
only one set of parameters for every location rather than learning a separate set of
parameters for every location. This does not affect the run-time of forward propagation
- it is still O (k × n) - but it reduces the storage requirements of the model from n
to k parameters. k is usually several orders of magnitude smaller than m. In most
cases, m and n are roughly the same size, hence m × k is practically insignificant
compared to m ×n. Convolution is thus dramatically more efficient than dense matrix
multiplication in terms of memory requirements and statistical efficiency.

Also in case of convolution, the particular form of parameter sharing causes the lay-
ers to have a property called equivariance to translation. A function is said to be
equivariant when it’s output changes in the same way as the input changes. For ex-
ample, a function f (x) is equivariant to a function g if f (g (x)) = g (f (x)). In the
case of convolution, if we let g be any function that translates the input, that is, shifts
it, then the convolution function is equivariant to g . Convolution is not naturally
equivariant to some other transformations, such as changes in scale or rotation of the
input data. Other mechanisms are necessary to tackle these kinds of transformations.
Finally, some kinds of data cannot be evaluated by neural networks defined by matrix
multiplication with a fixed shaped matrix. Convolution enables processing of some of
these kinds of data.

2.2.2 Pooling

A pooling function replaces the output of the net at a certain location with a summary
statistic of the nearby outputs. The max pooling [8] operation reports the maximum
output within a rectangular neighborhood. Other popular pooling functions include
the average of a rectangular neighborhood, the L2 norm of a rectangular neighborhood,
or a weighted average based on a distance from a central position. In all cases, pooling
helps to make the representation approximately invariant to small translations of the
input. The use of pooling can be viewed as adding an infinitely strong prior that the
function the layers learn must be invariant to small translations. When this assumption
is correct, it can greatly improve that statistical efficiency of the network.

Pooling over spatial regions produces invariance to translation, but if we pool over
the outputs of separately parametrized convolutions, the network can learn which

21

2 Mathematical basics

transformations to be invariant to. Since pooling summarizes the responses over the
whole neighborhood, it is possible to use fewer pooling units than detector units.
This improves the computational efficiency of the network because the next layer has
roughly k times fewer inputs to process. When the number of parameters in the next
layer is a function of it’s input (when the next layer is fully connected and based
on matrix multiplication), this reduction in input size can also result in statistical
efficiency and reduced memory requirements for storing parameters.

For many tasks, pooling is essential for handling inputs of varying size. Pooling can
complicate some kinds of network architectures that use top-down information, such
as Boltzmann machines and autoencoders. Some theoretical works gives us guidance
as which kinds of pooling one should use in various situations [9].

With section 2.1 and 2.2, we have tried to provide a comprehensive explanation about
basics of ANNs and the terminologies used in modern deep learning architectures.
In further sections, we will try to provide a short mathematical explanation of the
concepts used while generating required data to be used within this work.

2.3 Barycentric coordinates

In geometry, the barycentric coordinate system is a coordinate system in which the
location of a point of a simplex (a triangle, tetrahedron, etc.) is specified as the center
of mass, or barycenter, of usually unequal masses placed at it’s vertices. The system
was introduced in 1827 by August Ferdinand Möbius [10].

Consider a set of points P0, P1, . . . , Pn and consider the set of all affine combinations
taken from these points, i.e , all points P can be written as

α0P0 + α1P1 + · · · + αnPn (2.46)

for some
α0 + α1 + · · · + αn = 1 (2.47)

Then this set of points forms an affine space, and the coordinates

(α0, α1, . . . , αn)

are called the barycentric coordinates of the points of the space [11]. These coordi-
nates system is frequently useful and extensively used in working with triangles. This
barycentric parameterization is exactly the parameterization that is usually used in
many cases and in our case for generating 3D geometric data.

22

2.3 Barycentric coordinates

In context of this work, we will make use of barycentric coordinates to generate points
in a triangle. Consider three points P1, P2, P3 in the plane. If α1, α2, α3 are scalars
such that α1 + α2 + α3 = 1, then the point P defined by

P = α1P1 + α2P2 + α3P3 (2.48)

is a point on the plane of the triangle formed by P1, P2, P3. The point is within the
triangle ΔP1P2P3 if

0 ≤ α1, α2, α3 ≤ 1 (2.49)
If any of the α’s is less than zero or greater than one, then the point P is outside the
triangle. If any of the α’s is zero then P is on one of the lines joining the vertices of
the triangle. Figure (12) shows an example of such a triangle and three points P , Q
and R were calculated using the following α’s :

• P : α1 = α2 = 1
4 , α3 = 1

2

• Q : α1 = 1
2 , α2 = 3

4 , α3 = −1
4

• R : α1 = 0, α2 = 3
4 , α3 = 1

4

��

��

��

�

�
�

Figure 12: Barycentric coordinates

In this work, we would utilize the concept of Barycentric coordinates to generate points
inside elements of a part. In order to achieve this we would need to sample combina-
tions of α1, α2, α3 so that we can generate points inside elements that are uniformly
distributed. In order to do, we use the concept of Latin Hypercube sampling.

23

2 Mathematical basics

2.4 Latin hypercube sampling

Latin Hypercube Sampling (LHS) is a method of sampling a model input space, usually
for obtaining data for training meta models. In the context of statistical sampling, a
square grid containing sample positions is a Latin square if and only if there is only
one sample in each row and each column. A Latin hypercube is the generalization of
this concept to arbitrary number of dimensions.

When sampling a function of N variables, the range of each variable is divided into
M equally probable intervals. M sample points are then placed to satisfy the Latin
hypercube requirments. By representing each variable as its Cumulative Distribution
Function (CDF) and partitioning the CDF into M regions and taking a simple sample
from each region., increases the likelihood that entire range of the function is sampled.
A requirement for LHS is that each region of the CDF can only be sampled once for
each parameter. This is best visualized in a 2D space with Figure (13).

Figure 13: LHS 2D sample

As seen in Figure (13), there is only one sample in each row and column in (X , Y)
space. Using LHS technique, we sample α’s and then using these α’s we generate points
inside elements using Eq. (2.48). When we generate more than one point inside an
element, we do not want clustering of points in certain regions. In this case we employ
LHS sampling to produce fairly equally distributed points inside the element.

24

3 Machine learning approaches for
classification of geometric data

3.1 Theoretical aspects of 3D geometric data

The raw 3D data that are captured by different methods come in forms that vary in
both, the structure and properties. This section presents a comprehensive information
on different representations of 3D data by categorizing them into two main families:
Euclidean data and non-Euclidean data [12].

3.1.1 Euclidean-structured data

Certain 3D representations have an underlying Euclidean-structure where the proper-
ties of the grid-structured are preserved such as having a global parameterization and
a common system of coordinates. The main 3D representations that fall under this
category are:

Descriptors

A shape descriptor is a simplified representation of the 3D object to describe geometric
or topological characteristics of a 3D object. Shape descriptors are usually obtained
from the object’s surface,texture, depth or any other characteristic or a combination of
all [13]. Kamzi et al.[13] provides comprehensive surveys about 3D shape descriptors.
Shape descriptors can be considered as a signature of the 3D shape, which is presented
in numeric values to ease processing and computations. Figure shows an example of
descriptor,

Figure 14: Descriptor, which is constructed as a histogram of some field, defined on
an intrinsic local polar coordinate system (left, shown at three different points) [14]

25

3 Machine learning approaches for classification of geometric data

3D data projections

Projecting 3D data into 2D space is another representation for raw 3D data, in which
the projected data captures some of the key properties of the original 3D shape. The
type of features captured is dependent on the type of projection. Projecting 3D data
into spherical and cylindrical domains [15] have been a common practice for represent-
ing such format. However, such representations are not optimal for complicated 3D
computer vision tasks due to information loss in projection [16].

Figure 15: Projections [14]

RGB-D data

Due to the popularity of RGB-D sensors such as Microsoft’s Kinect [17], representing
3D data as RGB-D images have become popular in recent years. RGB-D data provides
information about the captured 3D object using a depth map (D) along with 2D color
information (RGB). Besides being inexpensive, RGB-D data are simple yet effective
representations for 3D objects to be used for different tasks such as identity recognition
[18], pose regression [19] etc. Also the number of available RGB-D datasets is huge
when compared to other 3D datasets [20].

Figure 16: Each RGB-D fame consist of and RGB image (left) and corresponding
depth image (right) [21]

26

3.1 Theoretical aspects of 3D geometric data

Volumetric data

3D data can be represented as a regular grid in the 3D space. Voxels are used to model
3D data by describing how the 3D object is distributed through the three dimensions
of space. Viewpoint information about the 3D shape can be encoded by classifying
the occupied voxels into visible, occluded or self-occluded. Despite the simplicity, the
voxel based representation is not always efficient and not suitable for representing high
resolution data [22].

A more efficient 3D volumetric representation is octree based [22], which is essentially
varying sized voxels. It models 3D objects as a hierarchical data structure that divides
the 3D scene into cubes that are either inside or outside of the object. Despite the
simplicity of forming 3D octrees, they are powerful in representing the fine details of
3D objects as compared to voxels. However, both voxels and octree representations
do not preserve the geometry of 3D objects in terms of the intrinsic properties of the
shape and the smoothness of the surface.

(a) Voxels[23] (b) Octree [24]

Figure 17: Volumetric data

Multiview data

3D data can be represented as a combination of multi-view 2D images for the same
object from different point of views [25]. Representing 3D data in this manner allows
learning multiple feature sets to reduce the effect of noise, incompleteness and illu-
mination problems on the captured data. However, the question of how many views
are sufficient to model the 3D shape is still open. Representing the 3D object with
an insufficiently small number of views might not capture the intrinsic properties of
the whole 3D shape. Also too many views would cause an unneeded computational
overhead. Multiview data is also not capable to capturing intrinsic shape properties.
However, learning well represented multi-view data has proved better performance
over learning 3D volumetric data [26].

27

3 Machine learning approaches for classification of geometric data

Figure 18: Multiview data [27]

3.1.2 Non-Euclidean data

An another type of 3D data representations is the non-Euclidean data. This type of
data representations suffers from the absence of global parametrization and the non-
existence of a common system of coordinates or vector space structures [28], which
makes processing of such data representations a challenging task. Considerable efforts
are directed towards learning from such data and applying machine learning tech-
niques on it. The main type of non-Euclidean data is point clouds, 3D meshes and
graphs. Usually processing such data types happens on a global scale to learn the
whole 3D object’s feature which is convenient for complex tasks such as recognition
and correspondence.

3D Point clouds

A point cloud can be seen as a set of unstructured 3D points that represents the ge-
ometry of the 3D object. Such a realization makes it a non-Euclidean geometric data
representation. However, point clouds can also be realized as a set of small Euclidean
subsets that have a global parameterization and a common system of coordinates and
invariant to transformations such as translation or rotation. So the definition of the
point cloud’s structure depends on whether one is considering the global or local struc-
ture of the object. Since in most machine learning techniques strive for capturing the
whole features of the object to perform complex tasks of recognition, correspondence,
matching or retrieval; we classify point clouds as non-Euclidean data

Despite the ease of capturing point clouds using available technologies such as Kinect
[17] and structured light scanners [29], processing them presents a challenging task due
to some problems related to their data structure. The data structure related problems
mainly arise due to lack of connectivity information in the point clouds, which makes
the surface information ambiguous. Furthermore, environment related problems are
usually present in real acquisition setup, i.e, the raw captured point clouds suffer from
noise, incompleteness, irregular sampling density and sometimes holes and missing
parts.

28

3.1 Theoretical aspects of 3D geometric data

Motivated by the use of point clouds in multiple computer vision tasks e.g. 3D recon-
struction [30], object recognition [31] and vehicle detection [32], a lot of work has been
done on processing point clouds for noise reduction.

Figure 19: Point cloud[33]

3D meshes and graphs

3D meshes are one of the most popular representations for 3D shapes. A 3D mesh
structure consists of a set of polygons called faces described in terms of a set of ver-
tices that describe how the mesh coordinates exist in the 3D space. These vertices are
associated with a connectivity list which describes how these vertices are connected
to each other. Learning 3D meshes is a challenging task because of two main reasons:
DeepLearning methods haven’t been readily extended to such irregular representa-
tions besides such data also suffers from noise, missing data and resolution problems
[34].

(a) 3D graph (b) 3D mesh

Figure 20: 3D meshes and graphs [33]

29

3 Machine learning approaches for classification of geometric data

3.2 Deep learning on 3D data

3D data has multiple popular representations as described briefly in Section (3.1),
leading to various approaches for learning. In this section we will briefly discuss some
of the significant machine learning approaches applied to them.

Volumetric CNNs: [35, 36, 37] are the pioneers applying 3D convolutional neural net-
works on voxelized shapes. But as we know, volumetric representation is constrained
by it’s resolution due to data sparsity and computation cost of 3D convolution. FPNN
[38] and Vote3D [39] has proposed methods to deal with the sparsity problem; however,
it’s challenging for them to process very large point clouds.

Multi-view CNNs: [40, 37] have tried to render 3D shapes into 2D images and then
apply 2D convolutional networks to classify them. This approach has achieved dom-
inating performance on shape classification and retrieval tasks due to the fact that
image CNN’s are well engineered for classification tasks [41]. However the question of
how many views are required to model the 3D shapes are still open.

Spectral CNNs: Some of the latest approaches [42, 43] use spectral CNNs on meshes.
However, these methods are currently constrained on manifold meshes such as organics
objects and it’s not obvious how to extend them to non-isometric shapes.

Feature-based DNNs: [44, 45] extracts traditional shape features from 3D data and
converts it into a vector. Then they use a fully connected network to classify the
shape. This approach is constrained by the representation power of the features ex-
tracted.

3.3 PointNet

In this work, we explore deep learning architectures capable of reasoning about 3D
geometric data of point clouds. Point clouds are simple and unified structures that
avoid the combinatorial irregularities and complexities of meshes and are thus eas-
ier to learn from. The network named PointNet [46], provides a unified architecture
for applications ranging from object classification, part segmentation, to scene pars-
ing. Though simple, PointNet is highly efficient and effective. Empirically, it shows
strong performance on par or even better than state of the art. In this section we
will discuss about the approach of using this deep learning architecture for geometry
classification.

PointNet is a unified architecture that directly takes point clouds as input and outputs
either class labels for the entire input or per point segment/part labels for each point
of the input. The basic architecture of the network is surprisingly simple as in the
initial stages each point is processed identically and independently. A point cloud is
represented as a set of 3D points {Pi | i = 1, . . . , n} where each point Pi is a vector
of it’s (x , y , z) coordinate plus extra feature channels such as color, normal etc. For
simplicity and clarity, we only use the (x , y , z) coordinates as our input.

30

3.3 PointNet

The architecture of the network is inspired by three main properties of point sets in
Rn :

• Unordered. Unlike pixel arrays in images or voxel arrays in volumetric grids,
point cloud is a set of points without specific order. In other words, a network
that consumes N 3D points sets need to be invariant to N ! permutations of the
input set in data feeding order.

• Interaction among points. The points are from a space with a distance metric.
It means that points are not isolated, and neighboring points form a meaningful
subset. Therefore, the model should be able to capture local structures from
nearby points, and the combinatorial interactions among local structures.

• Invariance under transformation. The learned representation of the point set
should be invariant to certain transformations. For example, rotating or trans-
lating points all together should not modify the global point cloud category.

The network architecture, visualized in Figure (21), outputs k scores for all the k
candidate classes. Please read the caption of Figure (21) for the pipeline.

Figure 21: PointNet Architecture [46]. The classification takes n points as input,
applies input and feature transformations, and then aggregates point features by max
pooling. The output is classification scores for k classes. The input transform and
feature transform network are visualized in Figure (22)

The network has three key modules: the max pooling layer as a symmetric function to
aggregate information from all the points, a local and global information combination
structure, and two joint alignment networks that align both input points and point
features. The reason behind this design choices are discussed as follows:

31

3 Machine learning approaches for classification of geometric data

3x3
transform

(512,256,9)

(a) input transform network

(512,256,4096)

64x64
transform

(b) feature transform network

Figure 22: Transform Networks

Symmetry function for unordered input. In order to make a model invarient to
input permutation, three strategies exist:

1. sort input into a canonical order;

2. treat the input as a sequence to train a Recurrent Neural Network, but augment
the training data by all kind of permutations;

3. use a simple symmetric function to aggregate the information from each point.

Here, a symmetric function takes n vectors as inputs and outputs a new vector that is
invariant to the input order. + and ∗ operators are symmetric binary functions. While
sorting sounds like a simple solution, but in high dimensional space there does not exist
an ordering that is stable w.r.t point perturbations in the general sense. The idea to use
RNN considers the point set as a sequential signal and hopes that by training the RNN
with randomly permuted sequences, the RNN will become invariant to input order.
However in “OrderMatters” [47] the authors have shown that order does matter and
cannot be totally omitted. In PointNet, the idea is to approximate a general function
defined on a point set by applying a symmetric function on transformed elements in
the set:

f ({x1, . . . , xn}) ≈ g (h (x1) , . . . , h (xn)) (3.1)
where f : 2Rn → R, h : Rn → RK and g : RK × · · · × RK

� �� �
n

→ R is a symmetric

function. Empirically, the basic module is very simple. It approximates h by a multi-
layer perceptron network and g by a composition of a single variable function and a
max pooling function. This is found to work well by experiments in [46]. Through a
collection of h, the architecture can learn a number of f ’s to capture different properties
of the set.

32

3.3 PointNet

Local and Global information aggregation The output from the above section
forms a vector [f1, . . . , fk] which is a global signature of the input set. It can easily
be used to train a Support Vector Machine or multi-layer perceptron classifier on the
shape global features for classification.

Joint alignment network The semantic labeling of a point cloud has to be invariant
if the point cloud undergoes certain geometric transformations, such as rotation or
translation. The PointNet architecture predicts an affine transformation matrix by
a mini-network (T-net in Figure (22)) and directly apply this transformation to the
coordinates of input points. The mini-network itself resembles the big network and
is composed by basic modules of point independent feature extraction, max pooling
and fully connected layers. This idea is further extended to the alignment of feature
space, as well. It inserts another alignment network on point features from different
input point clouds. The transformation matrix in the feature space has much higher
dimension than the spatial transform matrix which greatly increases the difficulty of
optimization. To overcome this a regularization term is added to the softmax training
loss. It constrains the feature transformation matrix to close to orthogonal matrix:

Lreg =� I − AAT �2
F (3.2)

where A is the feature alignment matrix predicted by the mini-network. An orthogonal
transformation will not lose information in the input.

The PointNet Architecture is implemented in TensorFlow, which is a open source
machine learning frame work. In this work we used Python 2.7 to generate training
data and Python 3.5 to train the PointNet architecture [48]. In order to speed up
the training cycle we used a GPU (Graphics Processor Unit). TensorFlow allows
us to use GPU’s to train machine learning algorithms with the aid of CUDA and
cuDNN. CUDA is parallel computing platform and programming model invented by
NVIDIA. It enables dramatic increase in computing performance by harnessing the
power of GPU [49]. The NVIDIA CUDA Deep Neural Network library (cuDNN) is a
GPU- accelerated library of primitives for deep neural networks [50]. cuDNN provides
highly tuned implementations for standard routines such as forward and back ward
convolution, pooling, normalization , and activation layers. In this work we we utilized
CUDA 9.0 and cuDNN 7.0 for training purpose.

The training data for PointNet was stored in HDF5 binary data format. Python pack-
age “h5py” was used to achieve this. HDF5 is a high-performance data management
and storage suite. It supports n-dimensional datasets and each element in the data set
can itself be complex object. It comes with a set of integrated performance features
that allow for access time and storage space optimization’s. Also there is no limit
on the number or size of data objects in the collection, giving great flexibility for big
data. In this work we would be working with storing huge amount of geometric data
as point clouds and hence HDF5 was chosen.

33

3 Machine learning approaches for classification of geometric data

Once we have generated training data, we train a model [48] to classify point clouds:
$ python t r a i n . py

Log files and network parameters will be saved to log folder in default. We can use Ten-
sorBoard to visualize the network architecture and monitor the training progress.
$ tensorboard −−l o g d i r l og

Once the training is complete, the trained model can be evaluated and we can check
visualizations of the error case
$ python eva luate . py −−v i su

3.4 Generation of 3D geometric data from FEM data

In the previous, a deep learning architecture is explained briefly which consumes point
clouds and can be used to classify 3D geometry. In this section ideas and algorithms
used to generate point clouds of 3D geometry for parts of car. Firstly we will have a
look at how part geometry is expressed in FEM data. Then we will discuss methods to
extract part geometry for individual parts and then using this part geometry data we
will generate point clouds. The approaches presented were developed using libraries
developed by SCALE Gmbh.

3.4.1 Extraction of geometry data from FEM data

In this subsection, we will discuss the ideas used to extract geometry data from FEM
data. Nodes are the base for expressing geometric data in FEM data. Elements are
formed with nodes and using elements we express part geometry. So when we want to
extract geometric data, it indicates that we are extracting the coordinates of nodes for
elements in a part. Now one can argue that we can just extract data of nodes present
in a part and use it as point cloud of a part. This would be a simple process but
we know that for feeding this point cloud into PointNet we would require the number
of points in point cloud for each part to be the same. In Body in white (BIW) of a
car not all parts are of same size and hence the number of nodes used to express the
geometries of different parts will be obviously different. Hence it becomes necessary to
extract data associated with elements that make up the parts and then use this data
to generate points on surface of the parts according to our need. In this work we will
only encounter with planar shell elements and thus the further discussions on elements
will consider only the properties of shell elements.

Figure (24) shows the example of include deck for LS-Dyna. Each part is associated
with a unique part identification number called the PID. Every node present in the
model is also identified using a unique node identification number called NID. As
seen in the Figure the *NODE card holds the geometric data i.e (x , y , z) coordinates.
The elements are defined using NID and PID. Using this relationship we can easily

34

3.4 Generation of 3D geometric data from FEM data

extract the geometric data for each part from the whole model. SCALE Gmbh has
developed a python library called femparser with which one could parse the include
decks of FEM data and extract geometric data. Figure 23 depicts the work flow for
geometric data extraction process which was implemented for this work. The output
of femparser is a python object which can be used to extract the geometric data of
individual parts using combination of part numbers, elements ID’s and node ID’s. The
extraction algorithm is presented in Algorithm (1). The output is stored in JSON
format files for the ease of reading the outputs and for futher processing steps (i.e
generation of point clouds)

FEM data
(LS-DYNA, PAMCRASH)

femparser
(python library)

part geometry
(.json files)

Figure 23: Geometric data extraction

Algorithm 1 Part geometry extraction
Input: FEM include file of car

Apply femparser → mesh(python object)

procedure 1.Exract all part id’s
for part in mesh do

extract part id’s
end for

end procedure

procedure 2.Extract geometry of each part
for id in parts id’s do

Extract element id from mesh
for element id do

extract nodal coordinates from mesh
end for

end for
end procedure

Output: part json’s

35

3 Machine learning approaches for classification of geometric data

*KEYWORD
*TITLE
Input Deck Example
$
$------------------define solution control and output parameters----------------
$
*CONTROL_TERMINATION
$# endtim endcyc dtmin endeng endmas
 1.000000 0 0.0 0.0 0.0
*DATABASE_BINARY_D3PLOT
$# dt/cycl
 0.010000
$
$---------------- define model geometry and material parameters ----------------
$
*PART
$# title
floor x member (left)
$# pid secid mid eosid hgid grav adpopt tmid
 1 1 1 0 1
*SECTION_SHELL
$# secid elform shrf nip propt qr/irid icomp setyp
 1 16 0.0 0 1 0.0 0 1
$# t1 t2 t3 t4 nloc marea
 0.100000 0.100000 0.100000 0.100000 0 0.0
*MAT_ELASTIC
$# mid ro e pr da db not used
 1 0.0100001.0000e+07 0.300000 0.0 0.0 0.0

*ELEMENT_SHELL
$# eid pid n1 n2 n3 n4 n5 n6 n7 n8
 1 1 1 31 32 2
 2 1 31 61 62 32
 3 1 61 91 92 62
 4 1 91 121 122 92
 .
 .

 2204 1 2279 1739 1740 2280
*NODE
$# nid x y z tc rc
 1 -33.94112396 -33.94112396 0.0
 2 -33.94112396 -33.94112396 4.13793087
 3 -33.94112396 -33.94112396 8.27586174
 .
 .
 2280 36.62803268 31.02236557 120.0000000
$
$------------- define boundary conditions and load curves -----------------------
$
*END

PID

NID

Figure 24: Input deck for LS-Dyna

36

3.4 Generation of 3D geometric data from FEM data

Element Selection

Point Generation

part geometry
(.json files)

Calculate
weight of
element

Estimate weight
for element

Traigulation of
shell element

Generate points
inside triangular

elements

part point cloud

Figure 25: Process of point cloud generation

3.4.2 Generation of point clouds

In the previous subsection, we extracted the geometric data for individual parts and
saved in JSON format. In this subsection we will discuss the approaches and algo-
rithms used to generate point clouds for parts which will be used to train the PointNet.
We have the coordinates of shell and triangular elements which makes up the parts.
To generate the point cloud for the complete geometry of the part we would have to
generate points on the surface of elements. It is necessary to have a roughly equal
distribution of points on the surface of the part so that concentration of points in
certain regions do not affect the quality of results which we would obtain in further
sections. We also have to take into consideration the fact that the number of elements
which describe a part are not all equal. Also the size of parts vary according to their
function. So we need to develop methods to generate point clouds which has points
uniformly distributed across the part surface and capture the complete geometric in-
formation. In this work, two step approach is used. First we select elements so that we
can capture the complete geometric information and then we triangulate the elements
to generate points on surface using the concept of barycentric coordinates

37

3 Machine learning approaches for classification of geometric data

Element selection

First we have to decide the number of points npoints to be generated in the point cloud.
Once we know how many points to generate, we can employ different approaches to
select elements, on the surface of which points will be generated. The simplest ap-
proach would be to generate one point, in random position, per element. Even though
it sounds logical, it fails to generate equal number of points for different parts because
they are not defined by the same number of elements. The next approach is called the
Naive random selection technique, in which we can select randomly npoints elements
and generate one point, in a random position, inside the corresponding element. This
approach looks fairly simple and would provide us a different point clouds for same
part. The problem with this approach is that we cannot guarantee a fairly equal dis-
tribution of points over the complete part since elements are chosen randomly. Also
when the number of points n is greater than the number of elements available for
point generation, some elements can be chosen multiple times and this would lead to
concentration of points at certain areas which are not under our control. In certain
cases this would also lead to loss of geometric information.

In order to improve the sampling of elements, we could use the area of element as a
parameter. Using area of element as a parameter we can estimate the significance of
an element. When the number of elements is greater than npoints , we would want to
generate more points in elements with larger area. With this we can also mitigate the
problem of loss of geometric information when the number of points npoints are less than
number of elements in a part. In this work, algorithms were developed considering the
above mentioned aspects. The area of elements were used as a parameter to select the
significant elements and weights were generated to estimate the number of points to
be generated within the element.

In this work the area of triangular elements is calculated using Eq (3.3) .

area�ABC = 1
2 | �AB × �AC | (3.3)

where �AB = B −A , �AC = C −A and A, B , C are the vertices of the triangle. In order
to calculate the area of shell elements, we triangulate them and sum up the areas of
the triangle. Once we calculate the area of all the elements in a part we generate a
weighing factor w for each element which is the measure of number of points to be
generated within the element. The weighing factor wi for i th element is calculated
using the Eq (3.4)

wi = Ai�n
i=1 Ai

× npoints (3.4)

where Ai is the area of the i th element and n is the number of elements which defines
the part. An important aspect to be noted during generation of wi is that they should
be whole numbers and hence the calculation needs to be refined accordingly. In order
to do so the first idea would be to round wi ’s to nearest integer. When we round the
wi to nearest integer two cases arise which needs to be addressed.

38

3.4 Generation of 3D geometric data from FEM data

Case I : �n
i=1 wi < npoints

We are required to generate npoints for each part and during the operation of rounding
wi , it might occur that �n

i=1 wi < npoints . In such cases we would have a deficit
of npoints − �n

i=1 wi points. We would need to account for this difference of points.
Algorithm (2) presents the methods employed in this work.

Algorithm 2 Refinement of weighing factors for the case �n
i=1 wi < npoints

Calculate deficit d = npoints − �n
i=1 wi

Calculate nz = number of elements with wi = 0
if nz > d then

Randomly choose elements with wi = 0 and make their wi = 1
end if
if nz < d then

Choose elements with wi = 0 and make their wi = 1
Find difference dz = d − nz

for dz do
Choose random element and do wi = wi + 1

end for
end if

Case II : �n
i=1 wi > npoints

When �n
i=1 wi is greater than npoints , then we will be generating excess points which

is not required. Algorithm presents methods used to reduce the these excess points in
this work.

Algorithm 3 Refinement of weighing factors for the case �n
i=1 wi > npoints

Calculate excess e = �n
i=1 wi − npoints

Find e number of elements with largest wi

for selected e elements do
Perform wi = wi − 1

end for

Point generation

Now that we know the number of points to generate on surface of each element of a part,
the next step is to discuss the method used for generating point inside the element.
In Chapter 2, we discussed the concept of barycentric coordinates and Latin hyper
cube sampling technique. These concepts will be used for generating points on the
surface of elements of the parts. The concept of barycentric coordinates can be applied
directly to triangular elements, but in our case we also have rectangular elements. The

39

3 Machine learning approaches for classification of geometric data

easiest way to generate point for rectangular elements would be triangulate them and
then use the concept of barycentric coordinates to generate points on their surface.
This method is employed in this work for generating points on surface for rectangular
elements.

With the aid of a simple example, the process of generation of points on surface of
elements will be explained. The example considers a simple rectangular element as
with this example the process for triangular elements becomes self explanatory. Figure
(26) shows the example for rectangular element ABCD .

�

�

�

�

�

�

�

�

�

�

�

�

Figure 26: Element ABCD

Step 1

Divide the rectangular element into two triangular elements as shown in Figure (27)

X

0

1

Y

0

1

Z
0

A

C

D

(a) �ACD

X

0

1

Y

0

1

Z
0

A

B

C

(b) �ABC

Figure 27: Triangulation of rectangular element

40

3.4 Generation of 3D geometric data from FEM data

In general case we can triangulate elements along any one of it’s diagonal. Ideally we
should expect similar results irrespective of the diagonal used for triangulation, but in
case with non planar elements this is not the case. In this work, we have not explored
methods to overcome this inconsistency.

Step 2

For this example let us assume we need to generate npoints = 10 for the element. As
this is a simple example the triangulation of the elements leads to triangle’s of equal
area and hence the number of points to be generated for each triangle is npoints/2. We
already have the geometric coordinate data of the vertices of the triangle and hence
we can easily generate points on surface of triangle using the concept of barycentric
coordinates. In order to do so we would require combinations of u, v , w ’s such that
they sample the space uniformly and there is no clustering of points. This is achieved
with the help of Latin Hyper-cube Sampling (LHS) technique. In order to generate
point inside a triangle we generate sample weights u, v , w such that

u + v + w ≤ 1 (3.5)

A point p on the surface of the �ABC can be calculated using the coordinates of the
vertices A, B and C using the Eq (3.6)

px = u · Ax + v · Bx + w · Cx

py = u · Ay + v · By + w · Cy

pz = u · Az + v · Bz + w · Cz

(3.6)

Using Eq (3.5) and (3.6) we generate points on surface of �ABC and �ACD (Figure
(27)) which we can see in Figure (28). The combination of points generated on surface
of triangle’s gives points on surface of shell elements.

X

0

1

Y

0

1

Z
0

A

B

C

D

(a) �ACD

X

0

1

Y

0

1

Z
0

A

B

C

D

(b) �ABC

Figure 28: Points generated on surface of triangular elements

41

3 Machine learning approaches for classification of geometric data

We extend this concept to all elements of the part and generate npoints number of points
on the surface of the part. Figure shows the examples of point clouds of some of the
parts of 2010 Toyota Yaris model which is detailed Finite Element Model available in
public domain [51].

(a) b-pillar

(b) side panel

(c) floor x member

Figure 29: Point clouds of parts

42

3.5 Geometry classification experiments

3.5 Geometry classification experiments

This section presents the investigations conducted to identify different parts of Toyota
Yaris Model using point clouds and PointNet. The results presented in [46] were on
objects across 16 object categories divided into 40 classes. We want to investigate if
we can extend the PointNet model to consume point cloud of part and provide an
accurate identification of the part. The basic idea is to give each part an unique class
label and check if the architecture is able to provide an accurate prediction of the
class label for all parts. The position of the part in the complete body is also an
important geometric information which can be used to identify the part, hence we do
not normalize our input data for PointNet. Numerous experiments were conducted
and the results obtained from them are outlined in this section.

3.5.1 Influence of number of points in point cloud

We tried to investigate the influence of number of points in point cloud to the clas-
sification capacity of PointNet. It was necessary to estimate the optimum minimum
number of points per point cloud required to obtain accurate classification capability.
It would also help to improve the performance in terms of training time and complexity
of the PointNet. In order to do the same, 10 different parts were taken from Toyota
Yaris Model and PointNet was trained for different number of points per point cloud.
Training data i.e point clouds were generated for the 10 parts with 256, 400, 1024 and
2048 points per part. The training data consisted for 400 samples for 10 parts. The
PointNet was trained with the following input parameters.

• batch size = 10

• decay rate = 0.7

• learning rate = 0.001

• momentum = 0.9

• optimizer = ADAM

The above mentioned input parameters were chosen in recommendation with the re-
sults from [46]. The training was done on Nvidia GeForce GTX 750 Ti. The results
obtained from training the PointNet architecture for different number of points in
point cloud is shown in Figure (30).

43

3 Machine learning approaches for classification of geometric data

� ��� ��� ��� ���� ���� ���� ���� ����

�������������������

���

���

���

���

���

���

���

���

�
�
�
�
��
�
�

���

���

����

����

Figure 30: Training accuracy for 10 parts

� ��� ��� ��� ���� ���� ���� ���� ����

�������������������

���

���

���

���

���

���

�
�
�
�

���

���

����

����

Figure 31: Training loss for 10 parts

From Figure (30) we can observe that the number of points in point cloud does not
have a drastic effect on the results of classification for 10 parts. Also the training
accuracy is nearly 90% which is expected in accordance with the results in [46]. It can
inferred that the number of points in point cloud does not have significant effects in
classification problem, but the number of points in point cloud has a significance when
it comes to capturing the geometric information of the part. In order to mitigate the
loss of geometric information it would be considered safe to take at least npoints = 1024
and proceed to check the classification capability of PointNet architecture for more
that 40 classes.

44

3.5 Geometry classification experiments

3.5.2 Influence of number of training samples

In this work, the input data for PointNet architecture was generated from FEM models
and unlike in [46] for each class label we only have one unique part. In order to have
a positive outcome for the classification problem, we need to determine the influence
of number of training samples used to train PointNet. We also need to have a look
at the influence of sampling technique used to sample parts in the training data set.
For this we chose 30 different parts from Toyota YARIS model and trained the model
for 500 training samples and 1000 training samples with test set consisting of 100
samples. The parts were randomly sampled to generate the training set. We employ
randomization of weights in LHS sampling due to which we have different point clouds
for same part .The PointNet was trained with the following input parameters on Nvidia
GeForce GTX 750 Ti for npoints = 1024.

• batch size = 10

• learning rate = 0.001

• momentum = 0.9

• optimizer = ADAM

The performance plots are shown in Figure (32). It can be clearly noted that the
performance of PointNet is better when we have more samples in training data. The
evaluation performance was estimated using 100 newly generated samples. The model
trained with 500 samples was able to correctly predict labels for 26 out of the 30 parts
whereas the model trained with 1000 samples was able to correctly predict the labels
for all 30 parts.

� �� ��� ��� ��� ���

������

���

���

���

���

���

���

�
��
��
��
�
��
�
�
�
��
�
�

�����������������

���

����

� �� ��� ��� ��� ���

������

���

���

���

���

���

���

�
�
�
��
�
��
�
�
��
�
�
�
��
�
�

�����������������

���

����

Figure 32: Performace of PointNet for 30 parts

45

3 Machine learning approaches for classification of geometric data

� �� ��� ��� ��� ���

������

�

�

�

�

�

�
��
��
��
�
��
�
�
�

�����������������

���

����

� �� ��� ��� ��� ���

������

�

�

��

��

��

��

��

��

�
�
�
��
�
�
��
�
��
�
�
�

�����������������

���

����

Figure 32: (Cont.) Performace of PointNet for 30 parts

3.5.3 Classification capability of PointNet

In this subsection we try to investigate the classification capability of the PointNet
architecture. The classification capability for up to 40 unique classes was achieved
in [46]. Our target would be to classify all the parts of a car or at least BIW of the
car. In order to do so 100 unique different parts were chosen from the Toyota YARIS
model. Point clouds were generated for these 100 parts and the PointNet architecture
was trained with the following input parameters on Nvidia GeForce GTX 750 Ti for
npoints = 1024.

• batch size = 10

• learning rate = 0.001

• momentum = 0.9

• optimizer = ADAM

• number of samples in training set = 3500

• number of samples in test set = 500

• number of epochs = 250

The performance plots are shown in Figure (33). The training time for 100 parts
was ∼ 8 hours. The performance of PointNet on 100 newly generated samples was
quite impressive with an accuracy of 0.95. An in depth investigation was conducted
on wrong classifications. It was found out that parts with similar shapes in close
proximity were wrongly predicted.

46

3.5 Geometry classification experiments

� �� ��� ��� ��� ���

������

���

���

���

���

���

���

�
�
�
�
��
�
�

�����

����

� �� ��� ��� ��� ���

������

�

�

�

�

�

�
�
�
�

�����

����

Figure 33: Performance of PointNet for 100 parts

(a) radiator frame front (b) radiator frame rear

Figure 34: radiator frame

As an example, PointNet identifies radiator front frame (Figure (34a)) as radiator rear
frame (Figure (34b)). The radiator frame front and radiator frame rear are closely
positioned as seen in Figure (34) and also it would be difficult for the human eye to
also distinguish them. Also the frequency with which the part appears in the training
data set also affects the results. This problem can be solved by generating equal
number of samples for all the parts instead of sampling them randomly.

47

3 Machine learning approaches for classification of geometric data

3.5.4 Classification of parts for TOYOTA YARIS model

From the previous subsection it is clear that the PointNet architecture was able to
classify 100 parts with 95% accuracy. In this subsection we will try to classify all the
parts present in BIW of the TOYOTA YARIS model (Figure 35).

Figure 35: Toyoto YARIS model

250 different parts were identified and extracted from the FEM model. We have not
combined mirrored parts i,e part with identical geometry on left and right side of the
car. It is necessary for us to know if PointNet is able to identify them with respect
to their positions. The PointNet was trained on Nvidia GeForce GTX 750 Ti for
npoints = 1024 with the following input parameters for the architecture.

• batch size = 10

• learning rate = 0.001

• momentum = 0.9

• optimizer = ADAM

• number of samples in training set = 10, 000

• number of samples in test set = 2500

• number of epochs = 300

Figure (36) shows the performance plots of PointNet when trained for 250 parts of the
YARIS model. The training time for 300 epochs is ∼ 30 hours.

48

3.5 Geometry classification experiments

� �� ��� ��� ��� ��� ���

������

���

���

���

���

���

���

�
�
�
�
��
�
�

�����

����

� �� ��� ��� ��� ��� ���

������

�

�

�

�

�

�

�
�
�
�

�����

����

Figure 36: Performance of PointNet for 250 parts

PointNet was able to achieve 88% training accuracy. The trained model was then
used to predict the class labels for unseen sample of point cloud for 250 parts. The
model was able to predict 237 class labels correctly for 250 parts. With this results it
becomes evident that 95% of part labels are predicted accurately by PointNet for the
YARIS model. It is also interesting to note that the model can accurately differentiate
similar geometries located on either side of axis of symmetry of the car. The only
downside here is we had only one version for each part. It would be interesting to see
the performance of PointNet when we have different versions of same part. In order
to do so we would require information of different versions of same part.

Now that we are able to identify parts using PointNet we move on to extending the
idea of using PointNet to predict spot weld parameters. Before moving on to that
we also conducted a small experiment to check if we have performance improvements
when we increase the number of points in point cloud drastically.

49

3 Machine learning approaches for classification of geometric data

The PointNet was trained on Nvidia GeForce GTX 750 Ti for npoints = 4096 with the
following input parameters for the architecture.

• Number of parts = 100

• batch size = 10

• learning rate = 0.001

• momentum = 0.9

• optimizer = ADAM

• number of samples in training set = 8, 000

• number of samples in test set = 200

• number of epochs = 300

� �� ��� ��� ��� ��� ���

������

���

���

���

���

���

���

�
�
�
�
��
�
�

�����

����

� �� ��� ��� ��� ��� ���

������

�

��

��

��

��

���

�
�
�
�

�����

����

Figure 37: Performance for npoints = 4096

It is quite evident from the performance plot that increasing the points in point cloud
to capture more detailed information does not improve results but provides far inferior
results as the test accuracy is only 50% and also the training time was ∼ 73 hours.

50

3.5 Geometry classification experiments

We can also attribute this to the fact that PointNet extracts only 1024 feature dimen-
sions for classification after the feature transformation network and hence increasing
the points in point cloud drastically won’t help our case. In future works, we can
experiment with the architecture of PointNet to extract more feature dimensions and
check for improvement in classification capability.

3.5.5 Classification of parts for AUDI model

The Simulation Data Management System LoCo provided an example of AUDI model
where we had the opportunity to test the performance of PointNet when different
versions of same parts exists. LoCo had information of a FEM model of an AUDI
car for a whole development cycle of roughly 5 years. From this data we used 2
include files to check if some parts have different versions and we found 13 parts with
different geometries. The model consisted of 350 parts and PointNet was trained for
npoints = 1024 with the following input parameters for the architecture.

• batch size = 10

• learning rate = 0.001

• momentum = 0.9

• optimizer = ADAM

• number of samples in training set = 17, 500

• number of samples in test set = 5000

• number of epochs = 250

Figure (38) shows the performance plots of PointNet for the AUDI model. PointNet
was able to achieve 80% training accuracy and the training time was ∼ 48 hours. On
evaluation of the trained model with new set of point clouds, the model was able to
identify 339 out of 350 parts correctly. This means that the trained model predicted
96% of the part labels accurately. This results are quite promising.

The trained model was then used to predict the part label for new versions of parts
used for training the model. Figure (39) show an example of part version where the
part was extended. The model was trained to identify the geometry shown in Figure
(39a) The trained model was used predict the part label of a version of the same part
where the part was extended as shown in Figure (39b). In reality the model has not
seen this new version in it’s training data but the trained model is able to predict the
correct part label. With this example we could see that the trained network is able to
predict correct class labels even when the part geometry changes but still maintains
positional similarity and some geometrical similarity to the part used for training the
model.

51

3 Machine learning approaches for classification of geometric data

� �� ��� ��� ��� ���

������

���

���

���

���

���

���

�
�
�
�
��
�
�

�����

����

� �� ��� ��� ��� ���

������

�

�

�

�

�

�

�
�
�
�

�����

����

Figure 38: Performance of PointNet on AUDI model

Figure (40) shows an example of part version where the part has some internal changes.
The model was trained to identify the geometry shown in Figure (40a) The trained
model was used predict the part label of a version of the same part where the part
has a small internal difference as shown in Figure (40b). In reality the model has not
seen this new version in it’s training data but the trained model is able to predict the
correct part label. One could argue that the sampling methods used to generate the
point clouds would not have captured such a small change and thus for the trained
model it doesn’t make any difference. In reality this would not be the case as the
PointNet uses overall geometry and the position of the part also as information for
predicting class label. The trained model was also able to predict accurate class labels
for remaining 11 parts with versions.

In this section we have seen that we are able to identify the parts of BIW using point
clouds and the prediction accuracy is very good for a machine learning algorithm. It
was able to classify different versions of same part with identical part labels which is
excellent for us.

52

3.5 Geometry classification experiments

When we scale our PointNet for a general case, we would need to test the classification
capability of PointNet by training with parts of one car and then checking the label
prediction of the model for parts of a different car. This experiment can be conducted
and verified by an expert in automotive industry in future works. The identification
capability of parts by PointNet leads to applying this method for many use cases, for
example to identify parts of car to assign material properties to the part, to name the
parts initially etc.

With the idea that we can identify the parts of BIW of car, we will try to extend this
idea for estimation of spot weld parameters for part combinations in BIW of a car.

(a) Model trained with geometry

(b) New version

Figure 39: Part version example 1

(a) Model trained with geometry

(b) New version

(c) Over lapped images to display internal difference

Figure 40: Part version example 2

53

4 Machine learning approaches for
estimation of spot weld design

In this chapter we will discuss the approaches used to estimate the parameters of spot
weld design for automotive construction of BIW of a car. In this work we tried to apply
machine learning approaches to estimate elementary data for automatic generation of
spot weld. This would provide us a fair idea if the possibility of automatic generation
of spot weld design is an feasible idea to pursue. We will first have a look at extracting
rudimentary data of spot weld design from FEM data which can then be used to
estimate parameters of spot weld design. We then try to apply machine learning
approaches to estimate these parameters and evaluate their performance for further
studies.

4.1 Extraction of spot weld data from FEM data

In this section, we will discuss the ideas used to extract rudimentary data of spot welds.
By rudimentary data, we mean the position of a spot weld (x , y , z), the combination
of parts being connected and the number of spot welds connecting combinations of
parts. In this work we extracted spot weld data from PAM-CRASH include files.
Pam-Crash is a software package from ESI Group used for crash simulation and design
of occupant safety systems in automotive industry. In Pam-Crash include files, PART
DEFINITION cards are used to define various parameters of a part. For us the PLINK
Element card is of importance. This card provides us information of spot welds in the
model. Figure (41) show an example of PLINK card, which gives us the information of
the coordinates of the weld point and the parts connected with this weld point.

PLINK / 8034863 8000100 8086911 1 2
 PART 31915 31000
 END

PID's

NID

Figure 41: PLINK card

From the collection of data of spot welds, we can find information about parts which are
connected to each other. Once we know the part combinations which are connected to
each other, we can easily extract the spot weld data just for a particular combination.
This approach was employed in this work. We first found out the combination of parts
which are connected to each other using spot welds. Then for each part combination

55

4 Machine learning approaches for estimation of spot weld design

we extracted the position of spot welds i.e, (x , y , z) coordinates. In order to do the
above mentioned ideas femparser was used. femparser provides PLINK as a python
object from which we can easily access the connected part names and coordinates of
the spot weld. For the example PLINK shown in Figure (41), using femparser we
extract the coordinates of NID 8086911 and this spot weld connects PID’s 31915 and
31000. This method was adopted to extracted the complete information about the
spot welds present in the model. Now we also have information of part combinations
which are connected using spot weld.

4.2 Identification of part combination’s using PointNet

This section presents the investigations conducted to identify various part combina-
tions of the AUDI model. Using the ideas presented in Section 4.1, we identified 873
part combinations in AUDI model connected using spot weld. We want to investigate
if we can extend the PointNet model to consume point cloud of part combinations
and provide an accurate identification of the part combination. The basic idea is to
give each part combination a unique label and evaluate if the architecture is able to
provide accurate prediction of class label for all the part combinations. In this case
also the position of the part combination is an important geometric information for
identification of the part combination. Numerous experiments were conducted and the
results obtained are outlined in this section.

4.2.1 Classification capability for 10 part combinations

In this subsection, we try to investigate the classification capability of PointNet archi-
tecture for 10 part combinations. Due to the computational effort and time involved,
a small problem of classifying 10 part combinations was conducted. It would help us
to understand if the PointNet architecture is able to provide good results or do we
need to make some modifications to architecture for classification of part combina-
tions. First we try to use the same architecture used for identification of individual
parts to classify part combinations. Training data i.e, point clouds were generated for
part combinations with 1024 points per part and thus each part combination would
be made up of npoints = 2048 points. The PointNet was trained with following input
parameters on Nvidia GeForce GTX 750 Ti.

• batch size = 10

• learning rate = 0.001

• momentum = 0.9

• optimizer = ADAM

• number of samples in training set = 400

56

4.2 Identification of part combination’s using PointNet

• number of samples in test set = 100

• number of epochs = 250

� �� ��� ��� ��� ���

������

���

���

���

���

���

���

�
�
�
�
��
�
�

�����

����

� �� ��� ��� ��� ���

������

�

�

��

��

��

��

�
�
�
�

�����

����

Figure 42: PointNet performance for 10 part combinations

The performance plots are shown in Figure (42). It can be clearly noted that the per-
formance of PointNet for classifying part combinations is poor. The training accuracy
is a mere 45% only. In order to understand the reason for this poor performance the
architecture was analyzed. Using just individual parts as test samples, we found out
that the input transform just rotates and scales the input training data to standard
scale. This can be avoided and hence we decided to remove the input transform. The
architecture after removing input transform is as shown in Figure (43). In this work,
this modified architecture of PointNet will be referred to PointNet-Combi.

Figure 43: PointNet architecture modification for part combinations

57

4 Machine learning approaches for estimation of spot weld design

PointNet-Combi was trained with the same training data with identical parameters
as mentioned in the previous experiment. The performance plots are visualized in
Figure (44). We can see that there is a considerable improvement in performance of
PointNet-Combi as compared to the performance of PointNet for classifying 10 part
combinations. PointNet-Combi was able to identify 7 out of 10 parts correctly. With
this modified architecture of PointNet-Combi, we next try to classify the 873 part
combinations of AUDI model.

� �� ��� ��� ��� ���

������

���

���

���

���

���

���

�
�
�
�
��
�
�

�����

����

� �� ��� ��� ��� ���

������

���

���

���

���

���

���

���

�
�
�
�

�����

����

Figure 44: PointNet-Combi performance for 10 part combinations

4.2.2 Identification of part combinations using PointNet-Combi

In previous subsection, modification of PointNet architecture to PointNet-Combi ar-
chitecture produced improved performance. In this subsection we use this modified
architecture to classify 873 part combinations from the AUDI model. The PointNet-
Combi architecture was trained for npoints = 1024 with the following input parameters
on Nvidia GeForec GTX 750 Ti :

• batch size = 10

• learning rate = 0.001

• momentum = 0.9

• optimizer = ADAM

• number of samples in training set = 43, 650

• number of samples in test set = 5000

• number of epochs = 300

58

4.2 Identification of part combination’s using PointNet

� �� ��� ��� ��� ���

������

���

���

���

���

���

���

�
�
�
�
��
�
�

�����

����

� �� ��� ��� ��� ���

������

�

�

�

�

�

�
�
�
�

�����

����

Figure 45: PointNet-Combi performance on 873 part combinations

The performance plots are show in Figure (45). The evaluation accuracy is just 60%
i.e, the trained network is able to predict only 524 part combination labels correctly.
This kind of performance is not useful for our further works. In an attempt to improve
the performance of PointNet-Combi architecture, one more modification was done to
the network. We removed the feature transform network. This architecture without
input and feature transforms will be referred to as PointNet-Basic in this work. The
modified architecture of PointNet-Basic is visualized in Figure (46).

PointNet-Basic was trained with the same training data with identical parameters as
mentioned in the previous experiment. The performance plots are visualized in Figure
(47). We can clearly see that there is no significant improvement in performance with
PointNet-Basic architecture.

59

4 Machine learning approaches for estimation of spot weld design

Figure 46: PointNet-Basic architecture

� �� �� �� �� ��� ��� ���

������

���

���

���

���

���

���

�
�
�
�
��
�
�

�����

����

� �� �� �� �� ��� ��� ���

������

���

���

���

���

���

���

���

���

�
�
�
�

�����

����

Figure 47: PointNet-Basic performance on 873 parts

Another attempt was conducted to improve the performance of PointNet-Basic archi-
tecture. Since we already know that there are two parts in a combination, we tried
to label the points and then train the PointNet-Basic architecture. In doing so the
input data dimension changes from nx3 to nx4, as shown in Figure (48), where the
fourth dimension is the label. We labeled points belonging to one part with 0 and the
label for points belonging to second was set to 1. This new architecture was trained
to identify the part combinations for npoints = 1024 with similar network parameters
as in previous examples and

• number of samples in training set = 26, 190

• number of samples in test set = 873

• number of epochs = 300

60

4.2 Identification of part combination’s using PointNet

Figure 48: PointNet-Basic architecture with point labelling

The performance plots are shown in Figure (49). On evaluation with the trained
model, it is only able to identify 596 part combinations correctly out of 873.

� �� ��� ��� ��� ���

������

���

���

���

���

���

���

�
�
�
�
��
�
�

�����

����

� �� ��� ��� ��� ���

������

�

�

�

�

�

�
�
�
�

�����

����

Figure 49: Performance plot for PointNet-Basic with point labeling

On inspection of predicted class label for part combinations, the trained model is
unable to differentiate part combinations when one part in the combination is signifi-
cantly larger in size than the other part. This leads to masking of the smaller geometry
by the bigger geometry which PointNet is not able to distinguish.

With the results from various experiments conducted to identify part combinations,
we can conclude that PointNet architecture cannot be effectively used to identify part
combinations.

61

4 Machine learning approaches for estimation of spot weld design

4.3 Spot weld design

The spot weld design, determined by the design engineer depends on many factors, i.e,
input parameters like loads and forces that might be applied to the structure, material
combination and geometry of the parts, the connection technology and it’s process
parameters. Our focus is mainly on parameters like position of the spot weld with
respect to the flange and the distance between the spot welds. Both these parameters
usually vary for each part combination. In this section we will describe the methods
use to calculate these parameters from FEM model

4.3.1 Minimum distance between spot welds

Figure (50) shows an example of bpillar of a car with spot weld design. The spot weld
design obtained for this example is a final result of numerous design and engineering
iterations. The design varies with respect to materials used and the sheet thickness of
the part. As an engineer our target would be to use machine learning for prediction of
this spot weld design without the effort and cost of numerous engineering simulations.
As this is a “first of it’s kind” work, initially we would be working towards estimation
of minimum distance between spot welds so that we a have a good starting design
which would need to go through minimum number of design iterations. In doing so
we would be at least saving a significant amount of cost and computational efforts
required to reach optimum spot weld design.

The spot welds are not always placed at equal distances to each other as shown in
Figure (51). The distances between the spot welds vary depending on many factors.
So in order to have a good initial estimate, the minimum distance between the spot
welds would be a good starting point. This subsection describes the methods used to
estimate the minimum distance between the spot welds “ds”.

In Section 4.1 we have extracted the coordinates of all spot welds present a particular
part combination. We now have a list of (x , y , z) coordinates which is the position of
spot welds for a particular part combination. Using this information we try to estimate
the minimum distance between the spot welds. In order to do so, we compute distance
to the nearest point for each point in the list and then compute the average of all the
minimum distances to get ds .

62

4.3 Spot weld design

Spot Welds

Figure 50: bpillar with spot welds

d1

d2

Figure 51: Distance between spot welds

63

4 Machine learning approaches for estimation of spot weld design

Consider we have n spot weld points for a part combination. Algorithm (4) presents the
method employed to estimate ds for a part combination. There exists many methods
to find the closest point for a chosen point from a given set of points. In this work
we employed a linear search solution, in which for a given point we computed the
euclidean distance to all other points and the closest point is the one which is at the
shortest distance to the given point.

Algorithm 4 Calculate ds for a part combination
Input: P1, . . . , Pn

for i = 1, . . . , n do
Find closest point P c

i for Pi

Calculate d c
i =

��3
j=1(P c

i ,j − Pi ,j)2

end for

ds =
�n

i=1 dc
i

n

Now that we have calculated ds , we have a parameter associated for each part combi-
nation. We could apply machine learning approaches to estimate this parameter.

4.3.2 Contact surface of joining parts

In spot weld design, in order to connect two parts, it is necessary to determine the
area where actual contact between the parts occurs. Figure (52) shows an example of
a part with spot welds placed at surfaces of contact with the joined part.

Figure 52: Part example with spot welds

We observe that for a part combination we can identify clusters which are isolated
contact surfaces with respective design properties i,e. for each contact surface the
distance between the spot welds can be different. In this case, we need to develop
methods to identify this clusters. The clusters are shown in Figure (53)

64

4.3 Spot weld design

Figure 53: Example of clusters on a part

In our case, the problem of finding clusters, leads to first finding elements of one part
that are in contact with another part and then using element connectivity to isolate
clusters. This subsection will describe and out lie the methods use to solve the above
mentioned two problems.

Finding contact elements

The basic idea used in this work to estimate contact elements was to find the nodes of
parts that are in contact proximity with each other. With this information of nodes
which are in contact proximity, we can easily find the elements that are in contact
for the two parts. Let us consider two parts P1 and P2. For each part we have the
coordinates of the element. The first step would be to identify unique nodes for both
P1 and P2. We identify the nodes of different parts that are in close proximity using
a parameter called ’search radius’. In FEM models, the parts in contact have a small
distance separating the parts as shown in Figure (54).

Figure 54: Example showing distance between connected parts

65

4 Machine learning approaches for estimation of spot weld design

Using advanced CAE pre–processing software ANSA, we found out distance between
closest nodes of two parts and this distance will be our search radius. The method
used to estimate nodes in contact proximity is that, for nodes in P1 we find nodes
in P2 such that the euclidean distance between them is less than or equal to search
radius. Now with these nodes we perform a reverse look up to find the elements that
are in contact. Thus we will have information of elements that are in contact for two
parts.

One numerical aspect we encounter with the above mentioned method is that when
the element size is larger than search radius. When this is the case, our methods would
not consider the nodes in close proximity and thus we would have loss of information.
In order to overcome this aspect, we first find elements of P1 which are in contact and
then using this elements we again perform a contact search with element size as search
radius to find contact elements on P2. On this contact elements of P2, either we can
do a refinement with default search radius or we can find the closest nodes of P1 and
thereby estimate the contact elements in P1. Figure (55) shows the nodes of contact
elements for part in Figure (52)

Figure 55: Contact elements displayed with help on nodes for part in Figure (52)

Estimating clusters in contact elements

Once we have the contact elements, our next step is to find clusters within this contact
elements. In order to achieve this, we utilize the idea of element connectivity. From
Figure (55) we see that, one can find clusters by grouping elements that are connected
together. Algorithm (5) explains the methods employed in this work to estimate the
clusters given that we have contact elements.

66

4.3 Spot weld design

Algorithm 5 Algorithm to find cluster from contact elements
1. Choose a random element from contact elements and add to Cluster list
2. Find elements in contact with elements present in Cluster list
3. Add these new elements to Cluster list.
4. Repeat Step 2 and Step 3 until no new elements are found to add to Cluster list
5. Elements in Cluster list represents a cluster.
6. Remove the elements found in Step 5 from contact elements
7. Repeat Step 1 to Step 6 until there are no elements left in contact elements

The method used to find clusters in this work is explained with an aid of an simple
example for the ease of understanding. Consider a simple example of contact elements
as shown in Figure (56).

Figure 56: Example of contact elements

Step 1 Choose a random element and find the outer nodes for this element as
shown

67

4 Machine learning approaches for estimation of spot weld design

Step 2 Find elements in contact using the outer nodes

Step 3 Find new outer nodes for elements found in Step 2

Step 4 Repeat Step 2 and Step 3 until the outer nodes in Step 2 finds no new
elements. This indicates we have found a cluster.

Step 5 We remove the elements that belong to the cluster found in Step 4 from
contact elements and repeat Step 1 to Step 4 for remaining elements.

68

4.4 Estimation of minimum distance between spot welds

When we apply Algorithm (5) to find clusters for contact elements found in Figure (55)
we obtain the the results presented in Figure (57), in which each cluster is visualized
using a unique color.

Figure 57: Different clusters for contact elements in (55)

4.4 Estimation of minimum distance between spot welds

In this section we will discuss the machine learning approaches employed in this work
for estimating minimum distance between spot welds ds . In Section 4.3 we discussed
methods to calculate minimum spot weld distance for part combinations. Two ap-
proaches were explored to predict this parameter.

4.4.1 Classification based approach

Classification based approach considers the use of PointNet to estimate minimum
distance between spot welds. In Section 4.2 we discussed the idea of using PointNet
to identify part combinations and results obtained were poor. So instead of using
PointNet to identify parts, we would try to generate class labels for ds and train the
PointNet-Combi to identify these class labels for part combinations. Experiments
were conducted based on this idea and the the results obtained are outlined in this
subsection.

Generation of class labels for ds

In previous geometry identification experiments, we labeled each part combination
with a unique label. However in this experiment we label the part combinations

69

4 Machine learning approaches for estimation of spot weld design

according to a criteria, which their corresponding ds values satisfies. The basic idea
is to use classifier to predict values for ds based on part combinations. This approach
was an attempt to use the geometry as an input to predict the parameter ds . We
conducted two experiments for this approach.

Experiment 1

In this experiment, ds values were computed for all part combinations. For certain
part combinations, the spot weld design is quite simple. They just have a single
connection at the point of contact between the connecting parts. We labeled this part
combinations with a class label of numerical value zero. Also in order to simply the first
experiment, part combinations with with ds > 100 mm were labeled with same class
label. For rest of the part combinations, labels were assigned values between 1 and 10
according to the criteria shown in Table (1) and thus we have 12 class labels.

Table 1: Labeling criteria for Experiment 1

criteria (mm) label
ds = 0 0

0 < ds < 10 1
10 < ds < 20 2
20 < ds < 30 3
30 < ds < 40 4
40 < ds < 50 5
50 < ds < 60 6
60 < ds < 70 7
70 < ds < 80 8
80 < ds < 90 9
90 < ds < 100 10

ds > 100 11

The PointNet-Combi was trained with the newly labeled training data of part combi-
nations on Nvidia GeForce GTX 750 Ti for npoints = 1024 with the following parame-
ters

• batch size = 10

• learning rate = 0.001

• momentum = 0.9

• optimizer = ADAM

• number of samples in training set = 52, 380

• number of samples in test set = 873

• number of epochs = 250

70

4.4 Estimation of minimum distance between spot welds

� �� ��� ��� ��� ���

������

���

���

���

���

���

���

�
�
�
�
��
�
�

�����

����

� �� ��� ��� ��� ���

������

���

���

���

���

���

���

���

���

�
�
�
�

�����

����

Figure 58: Performance plot for experiment 1

Figure (58) shows the performance plots for experiment 1. From the performance plots
we can see that PointNet is able to predict 90% class labels accurately. On evaluation
with new set of point clouds for part combinations, the trained model was able to
predict class labels for 803 part combinations accurately out of 873 part combinations.
This results are quite promising.

71

4 Machine learning approaches for estimation of spot weld design

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

�
�
����

�
�
�
��
�
���

�
���

�
�
�����

��

� � � � � � � � � �

�
�

�����������

�
�
��
�
�

�
��
�
��
���

�

Figure
59:

Prediction
analysis

for
experim

ent
1

72

4.4 Estimation of minimum distance between spot welds

Now that were a able to predict class labels for part combinations which gives us
an initial estimate of ds , we can analyze the wrong predictions of the trained model
to check deviation from the accurate results. For the spot weld design, it would be
really inaccurate to use the prediction of the trained model as an initial estimate
for generation of spot welds when prediction is greater than ds . In cases when the
prediction is less than ds , we would have an increased number of spot welds which
can then be reduced to optimum number using design iterations. With this basic
idea, we analyze the wrong predictions of the trained PointNet model. 803/873 class
label predictions were accurate. For 36 part combinations, the class label predictions
were greater than actual labels. For 34 part combinations, the class label predictions
were less than actual labels. Figure (59) shows a plot of prediction versus actual label
for wrongly labeled part combinations. We can see that out of 36 cases, when the
prediction is greater than actual label, in 24 instances the prediction deviated by just
one class label from the actual class. With these results we can see that this approach
can be refined further and we can predict the minimum distance between spot welds
using classification models.

Experiment 2

In previous experiment the class interval for which we labeled ds values was 10 mm.
In order to have more meaningful results we reduced this class interval to 2 mm. Like
in previous case, we limited our predictions for part combinations with ds < 100 mm.
In this experiment also we labeled part combinations with single spot weld connection
with label zero. We have 50 labels for values of ds lying between 0 − 100 mm as shown
in Table (2).

Table 2: Labeling criteria for Experiment 2

criteria (mm) label
ds = 0 0

0 < ds < 2 1
2 < ds < 4 2

... ...
98 < ds < 100 51

ds > 100 52

The PointNet-Combi was trained with the newly labeled training data of part combi-
nations on Nvidia GeForce GTX 750 Ti for npoints = 1024 with the following parame-
ters

• batch size = 10

• learning rate = 0.001

• momentum = 0.9

73

4 Machine learning approaches for estimation of spot weld design

• optimizer = ADAM

• number of samples in training set = 52, 380

• number of samples in test set = 873

• number of epochs = 200

� �� ��� ��� ���

������

���

���

���

���

���

���

�
�
�
�
��
�
�

�����

����

� �� ��� ��� ���

������

���

���

���

���

���

�
�
�
�

�����

����

Figure 60: Performance plots for Experiment 2

Figure (60) shows the performance plots for Experiment 2. From the performance
plots, we can see that we see that the evaluation accuracy of the model reached nearly
90% during training. The trained model was evaluated using a new set of point cloud
for each part combination and the prediction accuracy was 86%. The trained model
was able to predict the class labels of 758 part combinations correctly. The 115 wrong
predictions by the trained model was analyzed. For 56 part combinations the predicted
class label was less than the actual class label and for 59 class labels the predictions
were greater than actual class label.

74

4.4 Estimation of minimum distance between spot welds

Thus with this trained model we are able to predict the minimum spot weld distance
parameter ds for 86% of the the available part combinations with an accuracy of ±2
mm.

4.4.2 Prediction based approach

The basic idea of this approach was to use the identification capability of PointNet
to identify the parts, and then use another neural network to estimate spot weld
parameters. The approach is outlined in Figure (61). Here we first use PointNet
to identify the parts from their point clouds and then use the part identification to
predict spot weld parameters.PointNet is able to identify 96% part labels of AUDI
model accurately. So in this approach we try to build a model which consumes part
labels for two parts and predicts spot weld parameter ds .

Figure 61: Prediction based approach

The model used which consumes part labels and predicts the spot weld parameters is
a simple feed forward neural network with two or more hidden layers. In this work
we utilized a feed forward neural network with two hidden layers. The parameter
prediction model is a non linear model and we would require at least two hidden layers
to have meaningful results. The parameter prediction model was implemented using
TensorFlow. The important aspect in this model was data preparation and the model
architecture.

The input data for parameter prediction model are two part labels which are numeric
values. The output from the model is also a numeric value which is the prediction
for a spot weld parameter. In this work we tried to estimate the minimum distance
between the spot welds using this approach.

Training spot weld parameter predictor

In order to train the spot weld parameter predictor model, a training data set was gen-
erated from the AUDI model. The part labels and the spot weld parameter ds were
normalized in the range [0, 1] for training the feed forward neural network. Since we
did not have a bench marked architecture for this type of problem, many architecture
were experimented upon and only the architecture which provided meaningful results

75

4 Machine learning approaches for estimation of spot weld design

has been presented in this work. A feed forward neural network with 150 neurons in
the first hidden layer and 50 neurons in the second hidden layer was trained to predict
the spot weld parameter ds and the results obtained are outlined in this work. Back-
propogation algorithm was used to train the model and gradient descent optimization
was utilized with Mean Squared Error as the cost function. The model was trained
with the following parameters

• batch size = 10

• learning rate = 0.1

• number of samples in training set = 846

• number of epochs = 500, 000

� ������ ������ ������ ������ ������

������

�

��

��

��

��

�
�
�
�
��
�
�
�
�
��
�

Figure 62: Training spot weld parameter predictor model

Figure (62) shows cost vs epochs plot during model training. The trained model was
then used to predict spot weld parameter for the AUDI model. The results obtained are
presented below. Figure (63) shows the predictions of the trained spot weld predictor
model against the actual value of ds for the part combinations of AUDI model. From
the plot we can see that model performance is fairly good and in some cases the
predicted value is exactly equal to the actual value. This model also provides us fairly
meaningful results.

We calculated the deviation of the predicted values by the trained model so that we
can have an estimate of the overall performance of the model. The deviation de was
estimated using Eq. (4.1)

de = Actual ds − Predicted ds (4.1)

Table (3) shows the performance of the trained model. The performance accuracy is
calculated as the percentage of number of part combinations for which the de value
satisfies the mentioned deviation criteria.

76

4.4 Estimation of minimum distance between spot welds

Table 3: Performance of spot weld predictor model

Deviation in mm performance accuracy
de = 0 30.02%
de < 2 65.85%
de < 5 80.73%
de < 10 86%

Form the results in Table (3), we can say that when we correctly identify the part labels
the spot weld predictor model is able to predict the minimum spot weld distance
parameter ds for 65% of the available part combinations with an accuracy of ±2
mm.

4.4.3 Comparison of approaches

In order to evaluate the performance of the approaches mentioned in previous sub-
sections, a comparison study was performed. The methodologies used to predict spot
weld parameter ds is different for Classification based approach and Prediction based
approach.

Classification based approach directly consumes the point cloud of part combinations
and provides a prediction of a interval of width 2 mm. For a part combination, visu-
alized in Figure (64) , with ds value equal to 10 mm, the model in Classification based
approach consumes the point cloud of part combination as shown in Figure (65a) and
provides a prediction that the ds value for this particular part combination lies in the
interval of width 2 mm. Thus when the model predicts correct class label, the accuracy
of the prediction is within 2 mm of the actual value of ds . Thus we can evaluate the
accuracy of predictions and compare it with Prediction based approach.

Prediction based approach consumes point cloud of individual part in a part combina-
tion and provides a numeric estimation for ds . It achieves this by using the point cloud
of individual parts (Figure (65b)), first to identify them and then use a second Neural
network to predict the value of ds . In this approach, the model predicts a numeric
value for ds which can be directly compared to actual value of ds for respective part
combinations.

77

4 Machine learning approaches for estimation of spot weld design

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
��
�
�
�
��
�
�
��
�
���

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�
��
�
���

�

�
��
�
���

��
�
�
��
�
��

Figure
63:

Predictions
ofspot

weld
predictor

m
odel

78

4.4 Estimation of minimum distance between spot welds

Figure 64: Visualization of example part combination

(a) Input for Classification based approach (b) Input for Predic-
tion based approach

Figure 65: Visualization of input for different approaches

In order to evaluate the performance of both approaches we calculate the deviation of
predicted value of ds . We calculate the deviation de for both approaches differently.
de for Classification based approach us estimated using Eq (4.2)

dApproach1
e = (Predicted cL − Actual cL) ∗ Interval size (4.2)

where cL is the class label and Interval size is the difference between upper limit and
lower limit of the criteria defining the class labels. For Prediction based approach, we
estimate de using Eq (4.1).

During evaluation of performance for Prediction based approach, we also factor in
the fact that identification of PointNet for all parts of AUDI model is not 100%. We
identified the wrongly labeled parts and propagated this error in identification to the
final prediction of ds . The results obtained are visualized in Figure (66).

79

4 Machine learning approaches for estimation of spot weld design

de < 2

2 < de < 5

5 < de < 10

de > 10

87.6%

2.2%
4.4%

5.8%

(a) Classification based approach

de < 2

2 < de < 5

5 < de < 10 de > 10

63.2%

12.4%

7.8%
16.5%

(b) Prediction based approach

Figure 66: Comparison of approaches

In Figure (66), the results displayed are percentage of total number of part combi-
nations analyzed. From the results, we can see that Classification based approach
provides better estimation for larger number of part combinations as compared to
Prediction based approach. But Classification based approach doesn’t provide us the
possibility to include parameters like sheet metal thickness or material properties in
prediction of spot weld parameters. Prediction based approach provides good results
with the possibility of extending the model to include the parameters mentioned above
in order to have more realistic results.

80

4.5 Further outlooks

Classification based approach and Prediction based approach have their own strengths
and shortcomings. In Classification based approach, we are directly making use of geo-
metric information of the parts to predict spot weld parameters whereas in Prediction
based approach, the prediction of spot weld parameter has no relation to geometric
information. Since this work is first of it’s kind, we are looking for methods which can
incorporate more input parameters for predicting spot weld design, thereby increasing
the credibility of prediction, and thus Prediction based approach looks promising.

In future works, the performance of Prediction based approach can be improved by
experimenting with different input parameters of neural network architecture. We
can also conduct experiments on different architectures which can provide better per-
formance when we consider more input parameters for prediction of spot weld de-
sign.

4.5 Further outlooks

In previous section, we evaluated different approaches to estimate parameters of spot
weld design. With this work as base, we can develop methods to extract other spot
weld design parameters like distance of the spot weld from part edge, spot weld di-
ameter etc. Machine learning models can be trained to estimate these parameters
as well. Furthermore, we can also develop algorithms to generate spot weld designs
automatically using the predicted parameters.

Also in this work, only minor variations in architecture of PointNet was experimented
with. We can also probe with making architectural changes to PointNet which will
enable us to incorporate more input parameters for prediction of spot weld design.
In order to do so, we will need to investigate methods which will enable us to en-
code geometric data and input parameters together as input for a machine learning
architecture.

With the idea that PointNet has proved to identify parts using geometric data, we can
develop other methods to parametrize the spot weld design. For example, paramterize
the spot weld design as a geometry and then develop algorithms which can use this to
generate spot welds directly on part geometries. In simple terms, we generate a map
of spot weld design for each part combinations and then try to develop algorithms
which will try to fit this map to part combinations when we have a newer version for
one or both parts in the part combination.

81

5 Conclusion
In this work, we have developed and defined methods to extract significant input
parameters of existing 3D geometry from FEM data. The extraction of significant
parameters was completed with aid the library femparser and Python scripts. We
also defined methods to generate point clouds of individual geometries from signifi-
cant input parameters of existing 3D geometry. The identification of individual part
using point clouds was achieved using the deep learning architecture called PointNet.
The results of this classification problem were analyzed and we also tried to reason for
wrong predictions of classification problem. Due to the complexity of modeling parts
in FEM, for some parts extraction of individual geometries were not feasible and this
has contributed to minor errors in identification problem. In further works, we should
be able to solve this problem.

In order to estimate parameters for spot weld design, we first extracted significant
input parameter of minimum distance between the spot welds for existing FEM data.
This process was also achieved with aid of femparser and python scripts. In this work,
we have outlined two different approaches which were used to estimate spot weld pa-
rameter. Evaluation of performances of these two approaches was conducted and their
results are also compared.

Classification based approach dealt with the idea of directly using geometric data to
predict parameters. It involved the transformation of prediction problem into a clas-
sification problem for PointNet. Prediction based approach used PointNet first to
identify the parts from their geometries and then used this information to provide
a prediction for spot weld parameter using a separate neural network. It was found
out that, in order to improve the credibility of estimation of parameters for spot weld
design, Prediction based approach provided suitable base for further research.

With this work, we are able to provide credible results for identification of parts using
point cloud of parts and PointNet. We also have outlined approaches with which
we estimated minimum distance between spot welds for part combinations. These
approaches can further be developed for estimation of further parameters of spot weld
design.

83

References
[1] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Upper

Saddle River, NJ, USA: Prentice Hall PTR, 1998.

[2] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA: McGraw-Hill,
Inc., 1997.

[3] D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group, Eds., Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1:
Foundations. Cambridge, MA, USA: MIT Press, 1986.

[4] U. Reuter, Module BIWO-04 "Numerical Methods"-Lecture notes. Technische
Universität Dresden, Fakultät Bauingenieurwesen, 2016.

[5] K. Janocha and W. M. Czarnecki, “On loss functions for deep neural
networks in classification,” CoRR, vol. abs/1702.05659, 2017. [Online]. Available:
http://arxiv.org/abs/1702.05659

[6] Y. Lecun, Generalization and network design strategies. Elsevier, 1989.

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[8] Y. T. Zhou and R. Chellappa, “Computation of optical flow using a neural net-
work,” IEEE 1988 International Conference on Neural Networks, pp. 71–78 vol.2,
1988.

[9] Y. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun, “Ask the locals:
multi-way local pooling for image recognition,” in Proc. International Conference
on Computer Vision (ICCV’11). IEEE, 2011.

[10] E. Hille, Analytic Function Theory, 2nd ed. New York, NY, USA: Chelsea
Publishing Company, 1982.

[11] T. DeRose, “Coordinate-free geometric programming,” Seattle, Washingtion,
Tech. Rep., 1994.

[12] E. Ahmed, A. Saint, A. E. R. Shabayek, K. Cherenkova, R. Das, G. Gusev,
D. Aouada, and B. E. Ottersten, “Deep learning advances on different 3d
data representations: A survey,” CoRR, vol. abs/1808.01462, 2018. [Online].
Available: http://arxiv.org/abs/1808.01462

[13] I. K. Kazmi, L. You, and J. J. Zhang, “A survey of 2d and 3d shape
descriptors,” in 2013 10th International Conference Computer Graphics, Imaging
and Visualization(CGIV), vol. 00, Aug. 2013, pp. 1–10. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/CGIV.2013.11

[14] H. Maron, M. Galun, N. Aigerman, M. Trope, N. Dym, E. Yumer, V. G. Kim,
and Y. Lipman, “Convolutional neural networks on surfaces via seamless toric
covers,” ACM Trans. Graph., vol. 36, no. 4, pp. 71:1–71:10, Jul. 2017. [Online].
Available: http://doi.acm.org/10.1145/3072959.3073616

85

References

[15] Z. Cao, Q. Huang, and K. Ramani, “3d object classification via spherical
projections,” CoRR, vol. abs/1712.04426, 2017. [Online]. Available: http:
//arxiv.org/abs/1712.04426

[16] A. Sinha, J. Bai, and K. Ramani, “Deep learning 3d shape surfaces using geometry
images,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham: Springer International Publishing, 2016, pp. 223–240.

[17] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced computer vision with mi-
crosoft kinect sensor: A review,” IEEE Transactions on Cybernetics, vol. 43,
no. 5, pp. 1318–1334, Oct 2013.

[18] N. Erdogmus and S. Marcel, “Spoofing 2d face recognition systems with 3d
masks,” in 2013 International Conference of the BIOSIG Special Interest Group
(BIOSIG), Sep. 2013, pp. 1–8.

[19] G. Fanelli, T. Weise, J. Gall, and L. Van Gool, “Real time head pose estimation
from consumer depth cameras,” in Pattern Recognition, R. Mester and M. Fels-
berg, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 101–110.

[20] M. Firman, “Rgbd datasets: Past, present and future,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2016.

[21] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-view rgb-d
object dataset,” in 2011 IEEE International Conference on Robotics and Automa-
tion, May 2011, pp. 1817–1824.

[22] M. Tatarchenko, A. Dosovitskiy, and T. Brox, “Octree generating networks: Ef-
ficient convolutional architectures for high-resolution 3d outputs,” in 2017 IEEE
International Conference on Computer Vision (ICCV), Oct 2017, pp. 2107–2115.

[23] J. Javanshir Hasbestan and I. Senocak, “Binarized octree generation for cartesian
adaptive mesh refinement around immersed geometries,” Journal of Computa-
tional Physics, vol. 368, 12 2017.

[24] S. Lefebvre and H. Hoppe, “Parallel controllable texture synthesis,” in ACM
SIGGRAPH 2005 Papers, ser. SIGGRAPH ’05. New York, NY, USA: ACM,
2005, pp. 777–786. [Online]. Available: http://doi.acm.org/10.1145/1186822.
1073261

[25] J. Zhao, X. Xie, X. Xu, and S. Sun, “Multi-view learning overview:
Recent progress and new challenges,” Information Fusion, vol. 38, pp. 43 –
54, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1566253516302032

[26] Su, Hang, Maji, Subhransu, Kalogerakis, Evangelos, Learned-Miller, and Erik,
“Multi-view convolutional neural networks for 3d shape recognition,” in The IEEE
International Conference on Computer Vision (ICCV), December 2015.

[27] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view convolutional

86

REFERENCES

neural networks for 3d shape recognition,” in The IEEE International Conference
on Computer Vision (ICCV), December 2015.

[28] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Ge-
ometric deep learning: Going beyond euclidean data,” IEEE Signal Processing
Magazine, vol. 34, no. 4, pp. 18–42, July 2017.

[29] B.-Q. Shi, J. Liang, and Q. Liu, “Adaptive simplification of point cloud
using k-means clustering,” Computer-Aided Design, vol. 43, no. 8, pp. 910
– 922, 2011. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0010448511000844

[30] J. Park, H. Kim, Y.-W. Tai, M. S. Brown, and I. Kweon, “High quality depth map
upsampling for 3d-tof cameras,” in 2011 International Conference on Computer
Vision, Nov 2011, pp. 1623–1630.

[31] J. C. Rangel, V. Morell, M. Cazorla, S. Orts-Escolano, and J. García-Rodríguez,
“Object recognition in noisy rgb-d data using gng,” Pattern Analysis and
Applications, vol. 20, no. 4, pp. 1061–1076, Nov 2017. [Online]. Available:
https://doi.org/10.1007/s10044-016-0546-y

[32] C. Yan, H. Xie, D. Yang, J. Yin, Y. Zhang, and Q. Dai, “Supervised hash coding
with deep neural network for environment perception of intelligent vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 1, pp. 284–295,
Jan 2018.

[33] M. B. Alexander Bronstein, “Discrete geometry tutorial,” 2008. [Online].
Available: tosca.cs.technion.ac.il

[34] L. Cosmo, E. Rodolà, M. M. Bronstein, A. Torsello, D. Cremers, and
Y. Sahillioğlu, “Partial matching of deformable shapes,” in Proceedings of the
Eurographics 2016 Workshop on 3D Object Retrieval, ser. 3DOR ’16. Goslar
Germany, Germany: Eurographics Association, 2016, pp. 61–67. [Online].
Available: https://doi.org/10.2312/3dor.20161089

[35] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets:
A deep representation for volumetric shapes,” in The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2015.

[36] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network for
real-time object recognition,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Sep. 2015, pp. 922–928.

[37] C. R. Qi, H. Su, M. Niessner, A. Dai, M. Yan, and L. J. Guibas, “Volumetric and
multi-view cnns for object classification on 3d data,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[38] Y. Li, S. Pirk, H. Su, C. R. Qi, and L. J. Guibas, “Fpnn: Field probing neural
networks for 3d data,” in Advances in Neural Information Processing Systems
29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds.

87

References

Curran Associates, Inc., 2016, pp. 307–315. [Online]. Available: http://papers.
nips.cc/paper/6416-fpnn-field-probing-neural-networks-for-3d-data.pdf

[39] D. Zeng Wang and I. Posner, “Voting for voting in online point cloud object
detection,” in Proceedings of the Robotics: Science and Systems, Rome, Italy, 07
2015.

[40] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view convolutional
neural networks for 3d shape recognition,” in The IEEE International Conference
on Computer Vision (ICCV), December 2015.

[41] M. Savva, F. Yu, H. Su, A. Kanezaki, T. Furuya, R. Ohbuchi, Z. Zhou,
R. Yu, S. Bai, X. Bai, M. Aono, A. Tatsuma, S. Thermos, A. Axenopoulos,
G. T. Papadopoulos, P. Daras, X. Deng, Z. Lian, B. Li, H. Johan, Y. Lu,
and S. Mk, “Large-scale 3d shape retrieval from shapenet core55: Shrec’17
track,” in Proceedings of the Workshop on 3D Object Retrieval, ser. 3Dor ’17.
Goslar Germany, Germany: Eurographics Association, 2017, pp. 39–50. [Online].
Available: https://doi.org/10.2312/3dor.20171050

[42] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally
connected networks on graphs,” CoRR, vol. abs/1312.6203, 2013. [Online].
Available: http://arxiv.org/abs/1312.6203

[43] J. Masci, D. Boscaini, M. M. Bronstein, and P. Vandergheynst, “Geodesic con-
volutional neural networks on riemannian manifolds,” in The IEEE International
Conference on Computer Vision (ICCV) Workshops, December 2015.

[44] Y. Fang, J. Xie, G. Dai, M. Wang, F. Zhu, T. Xu, and E. Wong, “3d deep
shape descriptor,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

[45] K. Guo, D. Zou, and X. Chen, “3d mesh labeling via deep convolutional neural
networks,” ACM Trans. Graph., vol. 35, no. 1, pp. 3:1–3:12, Dec. 2015. [Online].
Available: http://doi.acm.org/10.1145/2835487

[46] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets
for 3d classification and segmentation,” arXiv preprint arXiv:1612.00593, 2016.

[47] O. Vinyals, S. Bengio, and M. Kudlur, “Order Matters: Sequence to sequence for
sets,” arXiv e-prints, p. arXiv:1511.06391, Nov 2015.

[48] Q. Charles, “pointnet,” Available at https://github.com/charlesq34/pointnet
(2019/02/22), 2017.

[49] NVIDIA, “Cuda,” Available at https://www.geforce.com/hardware/technology/
cuda (2019/02/22).

[50] “cudnn,” Available at https://developer.nvidia.com/cudnn (2019/02/22).

[51] “2010 toyota yaris detailed finite element model,” Available at https://www.ccsa.
gmu.edu/models/2010-toyota-yaris/ (2019/02/22), 2016.

88

A FEM data extraction source code

A.1 geometry_extraction.py

-*- coding : utf -8 -*-
from femparser import dynaparser
import json

filename = 'BIW.key '

Defining parser

parser = dynaparser . DYNAParser ()

with open(filename , 'r') as fem_model :
mesh = parser .parse(fem_model)

Extract PID 's

part_ids = []
part_names = []
for part in mesh.parts:

ids. append (mesh.parts[part].id)
part_names . append (mesh.parts[part]. name)

Extract geometric data and save in
json format

for id in part_ids :
mesh_nodes = []
for element in mesh.parts[id]. elements :

temp = []
for nodeid in element . node_ids :

temp. append (mesh.nodes[mesh. node_ids [nodeid]].
�→ tolist ())

mesh_nodes . append (temp)

with open('part_geometries /{} _coordinates .json '. format (
�→ part_names .index(id)), "w") as fh:

json.dump(mesh_nodes , fh , indent =4)

89

A FEM data extraction source code

A.2 spotweld_data_extraction.py

-*- coding : utf -8 -*-

from femparser import dynaparser , pamparser
import json

def dyna_to_mesh (filename):
parser = dynaparser . DYNAParser ()

with open(filename , 'r') as fem_model :
return parser .parse(fem_model)

def pam_to_mesh (filename):
return pamparser .Mesh(filename)

filename = 'audi_model .inc '

mesh = pam_to_mesh (filename)

plinks = [e for e in iter(mesh. get_containing_elements ()) if
�→ isinstance (e, pamparser .Plink)]

connected_parts = []
spot_welds = []
for plink in plinks :

if len(plink. pre_selection .parts) > 1:
new_connection = {}
p1 , p2 = plink. pre_selection .parts
connected_parts . append ([p1 , p2])
new_connection ['Part1 '] = p1
new_connection ['Part2 '] = p2
new_connection ['coordinates '] = mesh. get_node_by_id (

�→ plink. node_ids [0])
spot_welds . append (new_connection)

with open('spot_weld_data .json ', 'w') as fh:
json.dump(spot_welds , fh , indent =4)

90

B Point cloud generation source code

B.1 build_dataset .py

#! -*- coding :utf -8 -*-

from pointcloud_generator import *
import os
import natsort

Load part goemetries

path = 'Yaris/ part_geometries /'
files = natsort . natsorted (os. listdir (path))
print (files)

Generate part names for evaluation in PointNet

generate_shapenames_txt (files)

print ('Number of parts = {}'. format (len(files)))

Define number of samples to be generated
for training PointNet

number_of_samples = 1000

Define number of points to be generated in
pointcloud

number_of_points = 1024

Generate point clouds

labels = []
dataset = []
counter = 0

for i in range(number_of_samples):
if counter == 0:

index = i
else:

index = i % counter

filename = files [index]
labels . append (files.index(filename))

91

B Point cloud generation source code

points = point_cloud_combi (path , filename , number_of_points
�→)

print (" processing {}/{}". format (i, number_of_samples))

dataset . append (points)

if i != 0:
if i % len(files) == len(files) - 1:

counter += len(files)

Save point clouds in HDF5 format

with h5py.File(" yaris_parts_train_1024 .hdf5", "w") as f:
dset = f. create_dataset (" coordinates ", data=dataset ,

shape =(number_of_samples ,
�→ number_of_points , 4))

dset2 = f. create_dataset (" labels ", data=labels ,
shape =(number_of_samples , 1))

B.2 pointcloud_generator .py

#! -*- coding :utf -8 -*-

import json
import numpy as np
import random
from scipy import optimize
from pyDOE import *
import h5py
import glob
from random import choice
import os

def area_triangle (data):
'''
Calculates area of triangle
'''
AB = data [1] - data [0]
AC = data [2] - data [0]
area = 0.5 * np. linalg .norm(np.cross(AB , AC))
return area

def surface_area (coor):

92

B.2 pointcloud_generator .py

'''
Calculates area of elements
'''
data = np.array(coor)
s = 0
if len(data) == 4:

s = area_triangle (data [[0, 1, 2], :])
+ area_triangle (data [[0, 2, 3], :])

else:
s = area_triangle (data)

return s

def quality_check_weights (weights , n):
'''
Function to correct errors generated during
rounding of weights
'''
if weights .sum () > n:

extra = int(weights .sum () - n)
n_largest_ind = np. argpartition (weights , -extra)[-extra

�→ :]
weights [n_largest_ind] = weights [n_largest_ind] - 1

else:
diff = n - weights .sum ()
pos_zeros = np.where(weights == 0)
if len(pos_zeros [0]) < diff:

for index in pos_zeros [0]:
weights [index] = 1

for i in range(int(diff - len(pos_zeros [0]))):
weights [i] = weights [i] + 1

else:
while n - weights .sum () != 0:

index = random . choice (pos_zeros [0])
weights [index] = 1

return weights

def barycentric (data , n):
'''
Generates point inside a triangle
based on barycentric coordinates
& LHS sampling
'''
lhd = lhs (2, samples =int(n), criterion ='c')
a = np.sum(lhd , axis =1)
t = []
for l in lhd:

93

B Point cloud generation source code

t. append ((l[0] * data [0] + l[1] * data [1] + data [2] *
�→ (1 - (l[0] + l[1]))). tolist ())

return t

def generate_point (data , n):
'''
Function to generate points inside element
'''
data = np.array(data)
if len(data) == 4:

a1 = surface_area (data [[0, 2, 3], :])
a2 = surface_area (data [[0, 1, 2], :])
if n > 1:

w1 = round(n * (a1 / (a1 + a2)))
w2 = n - w1
t1 = barycentric (data [[0, 2, 3], :], w1)
t2 = barycentric (data [[0, 1, 2], :], w2)
t = t1 + t2

elif n == 1:
if a1 > a2:

t = barycentric (data [[0, 2, 3], :], 1)
else:

t = barycentric (data [[0, 1, 2], :], 1)
else:

t = barycentric (data , n)
return t

def point_cloud (path , filename , n):
"""
Function to generate point cloud for
individual parts
'path ' = directory to part jsons
'filename ' = part name
'n' = number of points in point cloud
"""

with open(path + filename) as f:
data = json.load(f)

input_data = np. array(data)
areas = []
for data in input_data :

areas. append (surface_area (data))

areas = np.array (areas)

94

B.2 pointcloud_generator .py

weights = np. around ((np. asarray ((areas / areas.sum ()).
�→ astype (float)) * n),

decimals =0)

weights = quality_check_weights (weights , n) # required
�→ because of rounding

points = []
for i, data in enumerate (input_data):

if weights [i] != 0:
gp = generate_point (data , weights [i])
for coordinates in gp:

points . append (coordinates)

return points

def point_cloud_combi (path , filename , n):
'''
Function to generate point cloud for
part combinations
'''
with open(path + filename) as f:

data = json.load(f)

n_new = n / len(data)

points = []
for part in data:

input_data = np. array(part)
areas = []
for data in input_data :

areas. append (surface_area (data))

areas = np.array (areas)

weights = np. around ((np. asarray ((areas / areas.sum ()).
�→ astype (float)) * n_new),

decimals =0)

weights = quality_check_weights (weights , n_new)

for i, data in enumerate (input_data):
if weights [i] != 0:

gp = generate_point (data , weights [i])
for coordinates in gp:

coordinates . append (part_num) # uncomment
�→ to insert part0 / part1

95

B Point cloud generation source code

points . append (coordinates)

points = np.array(points)
rotation_angle = np. random . uniform () * 2 * np.pi
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array ([[cosval , 0, sinval],

[0, 1, 0],
[-sinval , 0, cosval]])

rotated_points = np.dot(points , rotation_matrix)
points = rotated_points . tolist ()

count = 0
part_num = 0
for row in points :

row. append (part_num)
count += 1
if count == n_new:

part_num = 1
return points

def generate_shapenames_txt (files):
with open('shape_names .txt ', 'w') as f:

for filename in files:
basename , ext = os.path. splitext (filename)
pid , name , coordinates = basename .split('_')
f.write('{}\n'. format (pid + '_' + name))

96

C Neural network for prediction based ap-
proach

-*- code: utf -8 -*-

import tensorflow as tf
import pickle
import time

def data_provider (filename):
with open(filename , 'rb') as fh:

input_data = pickle .load(fh)
return input_data

Import training data

training_data = data_provider ('input_data_100 . pickle ')
training_value = data_provider ('values_100 . pickle ')

Define model architecture

batch_size = 100
x_ = tf. placeholder (tf.float32 , shape =[None , 2], name='x- input '

�→)
y_ = tf. placeholder (tf.float32 , shape =[None , 1], name='y- input '

�→)

Theta1 = tf. Variable (tf. random_uniform ([2, 150] , -1, 1), name="
�→ Theta1 ")

Thetat = tf. Variable (tf. random_uniform ([150 , 50], -1, 1), name=
�→ "Theta -t")

Theta2 = tf. Variable (tf. random_uniform ([50 , 1], -1, 1), name="
�→ Theta2 ")

Bias1 = tf. Variable (tf.zeros ([150]) , name="Bias1")
Biast = tf. Variable (tf.zeros ([50]) , name="Biast")
Bias2 = tf. Variable (tf.zeros ([1]) , name="Bias2")

with tf. name_scope (" layer2 ") as scope:
A2 = tf. sigmoid (tf. matmul (x_ , Theta1) + Bias1)

with tf. name_scope ("extra -layer") as scope:
extra = tf. sigmoid (tf. matmul (A2 , Thetat) + Biast)

with tf. name_scope (" layer3 ") as scope:

97

C Neural network for prediction based approach

Hypothesis = tf. sigmoid (tf. matmul (extra , Theta2) + Bias2)

with tf. name_scope ("cost") as scope:
cost = tf. reduce_sum (0.5 * (y_ - Hypothesis) ** 2)

with tf. name_scope ("train") as scope:
train_step = tf. train. AdamOptimizer (0.01) . minimize (cost)

Train the model

init = tf. global_variables_initializer ()
sess = tf. Session ()

sess.run(init)

num_batches = int(len(training_data) / batch_size)

logger = open('log.txt ', 'w')
t_start = time.clock ()
iter_no = 500000
for i in range(iter_no):

for batch_idx in range(num_batches):
start_idx = batch_idx * batch_size
end_idx = (batch_idx + 1) * batch_size
current_input = training_data [start_idx : end_idx]
current_y = training_value [start_idx : end_idx]
sess.run(train_step , feed_dict ={x_: current_input , y_:

�→ current_y })
if i % 100 == 0:

print('Epoch ', str(i).zfill(len(str(iter_no))), '----'
�→ , 'cost ', sess.run(cost , feed_dict ={x_:
�→ training_data , y_: training_value }))

logger .write('{} {}\n'. format (i, sess.run(cost ,
�→ feed_dict ={x_: training_data , y_: training_value
�→ })))

t_end = time.clock ()
print ('Elapsed time ', t_end - t_start)

Test the model and write out predictions

test_data = training_data
test_value = training_value

with open('predictions_spwd_150_50 .txt ', 'w') as fh:
for i, value in enumerate (test_data):

98

pred = sess.run(Hypothesis , feed_dict ={x_: [value]})
�→ [0][0]

print('Actual value = {} --- Prediction = {}'. format (
�→ test_value [i][0] , pred))

fh.write('{} {:.2f}\n'. format (test_value [i][0] , round (
�→ pred , 2)))

99

