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Abstract 

In the past 10 years SCALE developed a comprehensive simulation and test 

data framework (SCALE.sdm) in very close collaboration with AUDI and 

other brands of the VW group. There are several apps to cover the entire CAE 

design process. Today the system is being intensively used at many different 

simulation units, with currently over 800 registered users at the VW Group and 

at a large number of contracted service providers. An  important app for 

simulation data and process management of FEM models is the innovative 

software solution LoCo.  In addtion, there is a substantial app called CAViT, 

which does complex data management of result data from simulation as well as 

of physical test data.  

The system applies several new approaches to simulation and test data 

management, such as strict offline capabilities with permanent synchronization 

of relevant data, consequent version management of all involved objects by 

means of simulation models and processes, novel ontology based approaches 

for the assembly of components as well as easy customizability. The SDM 

solution is an open system for the integration of any third party or in-house 

CAE-product, such as pre-/post processors, FE-solvers, queuing systems, 

process scripts, etc. 

This paper focuses on recent developments and new approaches on data 

compression and how to make effective data transfer available. There are new 

implementations on data deduplication which will cut down the storage and 

bandwidth requirements by another factor of 6-8 compared to the current 

implementation. Related to uncompressed data this is a factor of compression 

of about 20-25. Another example is the development of encrypted local data 

storage by using smart cards allowing for two factor encryption. Essential 

contributions of the new developments are achievements of a big data research 

project founded by the German government (BMBF).  

Finally, the paper concludes with asummary. 



1 Introduction 

The SDM system offers users a graphical working environment for daily tasks 

of simulation engineers, see Fehler! Verweisquelle konnte nicht gefunden 

werden.. Access to simulation, test and process data has to be easy and with 

good performance. There should be no limitations on sharing model data or 

related documentation – either within the company or with external business 

partners. On this, data compression and effective transfer of data is essential.  

 

Figure 1:  LoCo user interface - workbench for simulation engineers 

Models in Simulation Data Management (SDM) systems have grown 

tremendously in recent years (see Figure 2: ). At the same time, these models 

typically exhibit a great deal of redundancy. This is not being fully exploited 

by established compression techniques, such as ZIP. In view of the size of 

state-of-the-art SDM systems, data storage and transfer cause large costs, 

which make more advanced compression approaches necessary. 
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Figure 2:  Model size and assembled simulations at an automotive company (absolute 

numbers withheld) over time. 

 

Data deduplication exploits the mentioned redundancy. It reduces space by 

removing repetitive data patterns. Every pattern is saved only once, and 

wherever it reappears, it is replaced by a link to its first occurrence. So far, this 

approach has largely been applied to backup scenarios, where data is assumed 

to be immutable and throughput is considerably more important than latency; 

or it has been applied to large-scale computing with multiple nodes. In the 

SDM domain, however, we need random access to the data, including deletion, 

and we usually deal with a single machine, even for the server. Therefore, 

existing solutions cannot be readily applied. 

We implemented a deduplicated storage system and incorporated it into 

SCALE’s SDM solution LoCo, which runs on both Linux and Windows. In the 

process we solved challenges such as choice of parameters, storage, deletion, 

data integrity, concurrency, deduplicated transfer, and encryption.  

We measured runtime performance and deduplication gain (i.e., space saved 

compared to non-deduplicated storage) on several datasets. In summary, the 

runtime performance is completely adequate for an SDM client (around 50 

MiB/s write and 150 MiB/s read) and promising for an SDM server. Figure 3: 

shows the compression ratio improvements of data deduplication in 

comparison to the state of the art.  



 

Figure 3:  Compression ratio improvements achieved using data deduplication. 

 

The following section will detail our implementation of data deduplication in 

the context of the SDM system LoCo. The final section will provide a 

summary and an outlook. 

2 Data deduplication 

2.1 Previous work 

Paulo and Pereira [7] define “deduplication as a technique for automatically 

eliminating coarse-grained and unrelated duplicate data.” Deduplication is not 

new: variants have been described as early as 1996 [11]. By now, many 

implementations exist, with various application scenarios in mind – cf. Ref. [7] 

for a comprehensive overview. However, none of these implementations match 

our requirements. 

For instance, most implementations address backup and archival scenarios, 

where data is assumed to be immutable, and throughput is considerably more 

important than latency [7,Table 1: ]. Many implementations come packaged as 

a product, such as a network-attached storage or a file system. Other systems 

are targeted at large-scale installations with multiple nodes, or their licence is 

unsuitable for commercial purposes. In addition, no system covers 

deduplication of both storage and transfer. 

The bottom line is that no off-the-shelf deduplication solution can be integrated 

into a single-node SDM server (or client) application. However, as we shall see 
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in the following, the techniques and systems described in the literature provide 

a copious supply of valuable ideas and concepts. Roughly speaking, the general 

approach of data deduplication consists of two major steps: 

 Chunking Partition an input file into chunks. 

 Indexing Look up in an index which chunks are already in store. 

In a third, but less demanding step, add the new chunks to the store. In many 

cases, one ought to also store a recipe for reconstructing the file from the 

chunks. 

The deduplication gain is the space saved by deduplication divided by the 

space required by the raw data. This quantity depends on two factors: (a) the 

number of duplicates found and (b) the storage overhead incurred by the index 

data structure. For instance, we may find more duplicates by using smaller 

chunks, but then we need a bigger index (which may also pose problems with 

respect to latency or throughput).  

Chunking 

The simplest of chunking merely partitions the file into fixed-size chunks. The 

problem with this method is that inserting or deleting bytes in the file will lead 

to completely new chunks. A widely used alternative is content-defined 

chunking.  

Here we need five parameters: the minimum chunk size, the maximum chunk 

size, the checksum method (such as the one from rsync [11] or Rabin-Karp 

[5]), the window size w and the divisor d (both nonnegative integers). We 

proceed as follows. 

We move a “sliding window” of size w over the input data, and at each 

position we compute the checksum of the window. For the above-mentioned 

checksum methods, this computation can be done in constant time: we only 

have to consider the byte that leaves the window and the byte that enters the 

window. The current right-hand window boundary marks a chunk boundary if 

(a) the minimum-size requirement is satisfied and the checksum is divisible by 

d, (b) moving the window further would violate the maximum size 

requirement, or (c) we reached the end of the file. 

The divisor can be construed as a target chunk size, if we assume that the 

window checksums are more or less evenly distributed. 

Indexing 

As noted in Ref. [7, Sec. 2.4], systems generally summarize the chunk content 

via a cryptographic hash (such as SHA-1), and the hash values are used to 



query or update the index. In its classical form, the index then is a mapping that 

associates, for each chunk in store, its hash value with its storage address. This 

is also called a full index. In contrast, a partial index may keep only a subset of 

the chunks; this saves index space and lookup time, but if a chunk is not 

present in the index, it may be added to the store a second time, i.e., the 

deduplication is partial. 

A more elaborate approach to partial deduplication is the sparse index [6]. Here 

chunks are grouped together into segments, and each segment is represented by 

a sample of its chunk hashes. The sparse index then is a mapping that 

associates each sampled hash value with storage information (manifest) about 

the segment that contains the chunk data with that hash value. A chunk can be 

referenced in several segments, but the chunk data is stored in exactly one 

segment.  

For an incoming segment, one samples its chunk hashes in order to find and 

select matching segments in the sparse index. Before the segment is stored, 

every chunk that occurs in any of the selected segments is replaced by a 

reference. We note that this manner of deduplication is partial, for the new 

segment can still contain a chunk that is present in some segment that did not 

get selected. 

Ghosh [3] proposes a similar technique, but instead of sampling the hashes, he 

uses a similarity sketch. 

Challenges 

Parameter values  The choice of minimum chunk size, maximum chunk size, 

checksum method, window size, and divisor is not 

obvious, and it may depend on the characteristics of the 

data. 

Storage and recipe  Chunks should be stored in a way that facilitates 

reconstructing files; e.g., we might store adjacent chunks 

in a file in adjacent locations, thereby reducing seeks. 

Depending on the storage layout, a dedicated recipe may 

be necessary for reconstructing a file. 

Deletion   Before a chunk can be deleted, we have to make sure that 

it is not referenced any more. Common techniques to 

achieve this are reference counting as well as mark and 

sweep [4, Sec. 3.3]. 

Data integrity The data structure is more complex than a simple 

collection of files, and a damaged chunk can affect a 

number of files. 
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Concurrency  Files are no longer independent: the index acts as a 

synchronization barrier. The index must be protected from 

concurrent access (in particular, if multiple processes are 

involved). 

Deduplic. transfer  We want to transfer only the chunks that the target side 

lacks, with a reasonable amount of roundtrips (cf. rsync). 

The deduplicated representations on client and server have 

to be compatible (support the same abstraction). 

Encryption  Storer et al. [9] show how to achieve end-to-end 

encryption for multiple parties via convergent encryption. 

Their setting assumes a full index. It is unclear whether 

this approach is compatible with, e.g., a sparse index. 

 

Parameter Values considered Value at optimal 

point 

checksum method rsync, Rabin-Karp Rabin-Karp 

minimum chunk size (bytes) 2
7
, 2

8
, ... , 2

13
 2

12
 

maximum chunk size (bytes) 2
20

 2
20

 

window size (bytes) 2
6
, 2

7
, ... , 2

9
 2

6
 

divisor (target chunk size; bytes) 2
13

, 2
14

, ... , 2
23

 2
14

 

Table 1:  Restricted parameter space, optimized values. 

 

3 Approach and implementation 

Content-defined chunking is employed for its superior deduplication gain. In 

conjunction with our deletion requirement, this decision has consequences for 

the index design: with variable-size chunks, overwriting deleted chunks is not a 

viable option. For defragmentation, chunks must be moved, and so the storage 

address is variable as well. Therefore, it cannot be used as a long-lived chunk 



reference. Instead, we reference chunks via their hashes. This, in turn, forces us 

to use a full index. 

When the index becomes prohibitively large, we permanently “freeze” (i.e., 

mark read only) the current store and open a new one. In that case, our 

deduplication is partial, because new files are not deduplicated against the 

frozen stores. This approach is trivial to implement and, provided that related 

files end up within the same store, leads to reasonable deduplication gain and 

runtime performance. 

3.1 Parameter values 

In order to explore the parameter space, we considered a dataset of 436 GiB of 

uncompressed real world data (mostly simulation models). As objective 

function we used the function that maps every point in the parameter space to 

the deduplication gain that is obtained by using the corresponding parameter 

values to deduplicate our dataset. Our aim was to maximize the objective 

function. 

However, this function is quite expensive to compute. Therefore, we first 

restricted the parameter space as shown in Table 1: . Second, we used a meta 

model approach: we computed the objective function on a 100-point random 

sample of the restricted parameter space and fitted a radial basis function to 

that sample. Then we maximized the latter function, obtaining the values 

shown in Table 1: . The whole optimization problem was modelled and solved 

using LS-OPT [8]. 

3.2 Storage and recipe 

Our abstraction for storing and retrieving chunks is the chunk store. This is a 

data structure that basically maps chunk hashes (or, more generally, keys) to 

the respective chunk data, plus a reference count. 

In addition to individual chunks, it supports named chunk sequences of 

bounded size and with arbitrary ancillary data. Each chunk in such a sequence 

can be accessed individually via its key, but the sequence can also be read or 

written like a stream. The sequence is preserved on disk, so that seeks are 

reduced. The sequence size is bounded to facilitate defragmentation. Finally, 

the chunk store supports transactions for atomically adding or deleting multiple 

chunks. 

When we chunk a file, we obtain a list of chunks. In order to reconstruct the 

file, we need the list of chunk hashes, or recipe. Our abstraction supports three 

strategies for storing the chunks and the recipe: 
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Index chunk   We can encode any sequence of chunk hashes in binary 

form and store that representation as a chunk in the chunk 

store. This kind of chunk we call index chunk. We store 

each chunk individually, and we store the whole recipe as 

one index chunk. 

Hierarchical index  Since an index chunk is merely a special chunk, it can 

refer to other index chunks, which gives rise to a 

hierarchical index. We factor parts of the recipe out as 

“subordinate” index chunks; this approach can be linked to 

a deduplication of index chunks. 

Chunk stream  We store the incoming new chunks in named sequences, 

commencing a new sequence whenever the size boundary 

is hit. With each sequence we store (as ancillary data) the 

corresponding part of the recipe, thus accommodating 

references to existing chunks. We treat the list of sequence 

names like an index chunk. The recipe is the concatenation 

of the partial recipes. 

In order to implement the chunk store, we created the following concepts and 

mechanisms: 

Flatstore  A file of bounded size that is basically a concatenation of 

chunks, plus checksums. With the exception of reference 

counts, flatstores cannot be updated. Existing flatstores are 

opened read only; new flatstores can be read from and 

appended to. Concurrent writes are not supported. 

Composite flatstore Combines multiple flatstores to overcome their limitations: 

it removes the size boundary, it can always be appended 

to, and it permits concurrent writes. Also, it encapsulates 

the bulk of our defragmentation procedure. 

Journal  Provides transactions for atomically manipulating multiple 

reference counts. 

Dictabase  The dictabase maps chunk keys to flatstore addresses; 

currently we mainly use leveldb [1]. 

Dictabase locker  Allows selectively locking the dictabase for given keys. 

Put bluntly, “chunk store = composite flatstore + journal + dictabase + 

dictabase locker”. 

In order to store a chunk with some key, we lock the dictabase for that key and 

look up the address. If the lookup succeeds, we merely increase the reference 



count for the chunk. Otherwise, the data is written to the composite flatstore, 

and the resulting address is put into the dictabase under said key. Finally, we 

release the lock on the dictabase. The deletion of chunks is analogous, but the 

key is not removed from the dictabase; this happens only at defragmentation. 

In order to retrieve a chunk, we query the dictabase to obtain the address, and 

then we read the chunk data from the composite flatstore. Note that there is no 

need to lock the dictabase for the key. 

Technically, a new chunk is first stored at a reference count of zero, and then 

this count is increased by one. Consequently, the journal allows atomically 

adding or removing multiple chunks. 

3.3 Deletion 

We use the reference counting facility provided by the chunk store to keep 

track of the number of times that a chunk occurs in the stored recipes. That is, a 

chunk has a reference count of zero precisely when there is no recipe that refers 

to it. Such a chunk is essentially garbage. In order to reclaim the space 

occupied by garbage, we need to defragment the composite flatstore.  

During defragmentation, the storage address of any chunk can change, and that 

has to be reflected in the dictabase. Moreover, if the defragmentation process is 

interrupted, we have to make sure that the composite flatstore and dictabase are 

left in a state that is consistent or easily made consistent.  

For this reason, we do not defragment “in place”, but we copy chunks from one 

flatstore into a new one. Before we start, we flag the old flatstore as “under 

defragmentation”. The new flatstore is only incorporated into the composite 

flatstore when it is finished, and only then is the old flatstore deleted. Finally, 

we update the dictabase. 

Any interruption is easily detected: either we find a not-yet-incorporated new 

flatstore – then we delete it and remove any defragmentation flags we find –, or 

we delete any flagged flatstore. Interruptions during the dictabase update are 

not critical: the address of every copied chunk will be carried over the next 

time the chunk store is opened (see Sec. 3.4). Remaining addresses of garbage 

chunks will be detected easily (upon lookup) because the whole address space 

will have vanished together with the old flatstore. 
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Figure 4:  File classes in deduplicated vault grouped by their individual deduplication 

gain. 

3.4 Data integrity 

There is a multitude of reasons why data integrity may be at risk: when the disk 

is full, files may be written partially. Or when the power goes out, write buffers 

in the operating system do not make it onto the disk. Or the application crashes 

in the midst of adding a file to the store, before the recipe is complete, leaving 

behind a number of garbage chunks or even inaccurate reference counts. 

Naturally, we want to detect and handle any of these situations. To that end, 

flatstores include CRC-32 checksums for chunks and CRC-8 checksums for 

metadata. Any read operation is anticipated to be partial. The composite 

flatstore detects incomplete defragmentation operations (see 3.3). 

Upon opening the chunk store, we perform maintenance: we try to read any 

chunks that were newly appended since the last “sync”, i.e., when the operating 

system buffers were forced on disk. If we find an inconsistency, we truncate 

the respective flatstore. Also, we keep information in the dictabase about the 

address space it covered at the last sync, and we update the dictabase should it 

miss any addresses. 

Finally, we replay the journal transactions since the last sync, rolling back any 

incomplete transaction. Each step is idempotent by design; therefore, 

maintenance can safely be repeated after an interruption. 

 



3.5 Encryption 

We use the authenticated model described in Ref. [9, Sec. 4.2]. Our main 

concern has been to protect the local storage, and we only support one key pair: 

that of the (fictitious) local storage owner. For an end-to-end encrypted 

deduplicated transfer, we would need a globally valid key pair per user. 

4 Experiments and results 

We implemented our deduplicated storage in Python (with the chunking in 

Cython), and we incorporated it into the SDM client software LoCo [10], 

which runs on both Linux and Windows. Subjectively, no difference in the 

performance between the conventional and the deduplicated storage could be 

noticed. 

Intuitively, it is clear that some files are more amenable to deduplication than 

others. More precisely, if we partition the set of files in a data storage into 

classes and deduplicate each class on its own, we obtain different deduplication 

gains. For our analysis, we selected the partition such that two files are in the 

same class precisely when they have a chunk in common. On a real-world 

dataset with 260 K files, 292 GiB (zlib compressed), and a total deduplication 

gain of 75 %, we found 208 K classes. 

These classes can be divided into three groups (see Fig. 4): almost 200 K 

classes consist of only one file each; these make up 19.6 GiB. There are 8 K 

further classes whose individual gain is at most 75 %; these have 40 K files and 

59.8 GiB in total. The remaining 323 classes consist of 20 K files and 213.0 

GiB. The three groups have total deduplication gains of 0 %, 35 %, and 93 %, 

respectively, corresponding to deduplication rates of 1, 1.5, and 14, 

respectively. 

In summary, the deduplication gain that can be achieved very much depends on 

the data at hand. For instance, the first group contained a lot of preview images 

and no simulation models whatsoever, while most simulation models were in 

the third group. Therefore, we surmise that a deduplication rate in the range of 

3 to 8 is possible for mixed SDM data; for pure simulation models 12 and more 

is possible. 

5 Summary 

We considered an advanced compression technique – data deduplication – and 

how to apply it to SDM models. There is no off-the-shelf solution that can be 

used in the SDM scenario. 

For data deduplication, we solved challenges such as choice of parameters, 

storage, deletion, data integrity, and encryption. We implemented our 
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procedure in Python and incorporated it into the SDM client LoCo. The 

runtime performance is completely adequate for an SDM client. We measured 

the deduplication gain on several datasets. We achieve a deduplication gain of 

75 % for mixed SDM data and 87–93 % for pure simulation models (which 

corresponds to deduplication rates of 4 and 8–14, respectively). 
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