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ABSTRACT

In the field of engineering the design process requires that component designs satisfy specific
system design goals. These designs are called good designs. It is desirable that components can
be designed independently and robust with respect to variation. This problem is equivalent to
determining the largest box in the subspace of good designs. Such a box is a cartesian product
of permissible design parameter intervals. Typically, the classification into good and bad designs
is computed by numerical methods (e.g. FEM) and in few cases given by real experiments (e.g.
crash tests in automotive design). Hence, the design space is approximated by a finite number of
points. This work develops a software prototype which determines permissible intervals on this
approximated design space. Essential steps in the pipeline are outlier detection, data augmenta-
tion with machine learning, clustering and box maximization. For box maximization an exact as
well as two heuristic algorithms are developed. The box maximization algorithms are evaluated
on synthetic data in order to have a benchmark for comparison. It is shown that the runtime
grows with the amount of designs and dimensions. A heuristic algorithm based on the meta-
heuristic simulated annealing mostly finds good solutions on the tested cases. Furthermore, the
prototype is evaluated on two real automotive crash datasets. The end-to-end evaluation shows
that the prototype is capable of removing outliers, augmenting the design space and providing
permissible intervals of design parameters for problems with arbitrary dimensionality.
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1 INTRODUCTION

The design of structural components in automotive manufacturing is an iterative process consist-
ing of volatile and rough requirements [32]. To decrease production costs, engineers make use
of computer-aided methods (abbreaviated CAx, Computer-Aided x) in the early phase of prod-
uct development. The CAx process chain itself is composed of two main tasks: computer-aided
design (CAD) and computer-aided engineering (CAE) ([32], Section 2.3). Steber states that ‘the
objective of CAE is to determine the functional properties of components with a physical substitue
model as accurate as possible‘. For that reason, forces on objects and resulting deformations are
computed using numerical methods like the finite element method (FEM). An example is crash
simulation where the deformation of a vehicle in an accident is computed. This evades the exe-
cution of an expensive crash test with a real vehicle.
Part of the CAx process is the design of structural components in a way to meet requirements for
the whole vehicle. Those requirements are called system design goals. At the same time, engineers
want to optimize their structural components for different component design goals, such as weight
and cost [33]. In the case of crash testing for example the system design goal could be that the
deformation of the vehicle stays in an acceptable range. A component design goal would be to
optimize a suspension arm in a way to reduce production costs, while still satisfying the over-
all system design goals of the vehicle. During the design process, engineers need to have these
design goals in mind.

1.1 NONLINEARITY IN THE DESIGN PROCESS

Designs can be understood as a set of design parameters [33]. A design can be evaluated by an
arbitrary function to get a system response. In terms of our crash simulation example, the function
is the crash simulation, a design parameter can be the belt force level on a dummy’s seatbelt and
the system response can be the force on the neck of a dummy. In this case engineers would try
to design the vehicle in a way that the force on the neck of the dummy is not too high in order to
ensure the safety of the passenger. Constraints on such a force can be seen as a design goal, which
is either satisfied or not. This divides the designs in good or bad designs. Due to the complex,
nonlinear nature of the modeled system (e.g. crash simulation), the shape of regions with good
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Chapter 1 Introduction

Figure 1.1: A two-dimensional design space with good and bad designs. An axis-parallel box of good de-
signs is equivalent to a permissible interval for each design parameter. This idea generalizes into
multidimensional design spaces.

and bad designs can be arbitrary.
When optimizing designs, engineers commonly have to choose specific values for those design
parameters. The selection of these values is difficult because the modeled system is complex:
parameters interact with one another and behave nonlinear. A change in one parameter can
cause a completeley different system response; while a change of another parameter might not
affect the system response at all. The modeled systems are more sensitive to some parameters, to
others less.
With trial and error and over time, engineers gain an intuitive understanding of the influence
of their parameter selection on the system response. With this knowledge it is possible to make
educated guesses on the basis of sparse data. However, this process is very time-consuming and
requires expert knowledge. Therefore, there exists a need to support engineers in the process
of selecting permissible design parameters; meaning design parameters which result in good
designs.

1.2 DECOUPLING DESIGN PARAMETERS

From the perspective of engineers it would be easier to choose values for design parameters freely
from intervals, where they can be confident that the system response will still meet their design
goal. We refer to these intervals as permissible intervals.
In general, as the space of good designs can be of arbitrary shape, it is not possible to do that.

14



1.3 Practical Limitations

In most cases the system response and therefore, the distinction between good and bad designs
inherently depends on the combination of design parameters. To be able to choose a value for a
parameter independently of other parameters, the parameter selection has to be decoupled from
one another. In a spatial sense this means that the objective is to find multidimensional axis-
parallel boxes of good designs. Figure 1.1 shows this visually.
The main goal of the software prototype developed in this thesis is to find axis-parallel boxes of
good designs which are equivalent to permissible intervals for each design parameter. Since there
is an infinite amount of possible boxes for regions of good designs, the goal is to find a preferably
large box, to provide engineers with large intervals to choose from. By finding those boxes, we
can reduce the complexity of choosing suitable design parameters for the engineer. The key idea
is to simplify the complex problem of design parameter selection to a linear problem.

1.3 PRACTICAL LIMITATIONS

In order to provide engineers with a solution to the proposed problem, three practical limitations
have to be taken into account:

1. The solution provided in this thesis assumes that designs are provided as data points with-
out any knowledge about the process which created it. Therefore, the function of the under-
lying process is neither known analytically nor numerically.

2. As data in practice is often assembled from different sources with the possibility of human
error, there has to be a preprocessing step to find outliers. They need to be removed.

3. It can not be assumed that the provided data fills the design space evenly. There may be
gaps for specific design parameter combinations.

1.4 THESIS STRUCTURE

The goal of this thesis is to implement a software prototype which determines independent mul-
tidimensional intervals of permissible design parameters for a given dataset of designs consisting
of design parameters and system responses.

At the beginning of Chapter 2 a problem statement defines the problem space theoretically. On
the basis of related work a concept for a software solution is created which considers the practical
limitations stated in Section Section 1.3. As a result, the proposed solution needs to leverage
specific technologies, such as outlier detection, model generation, clustering and optimization.
Therefore, we revisit these methods in Chapter 3. Chapter 4 explains implementation specifics
and the user workflow of the prototype. In Chapter 5 the distinct components of the prototype
are evaluated on the basis of synthetic data. In Chapter 6 the whole prototype is evaluated on
the basis of real datasets. In Chapter 7 the findings of the evaluation and its implications are
discussed. Eventually, we sum up the work and give a conclusion.
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2 CONCEPT DEVELOPMENT

In the Introduction we sketched the engineer’s problem of optimizing good designs in a way that
they still meet their design goals. For this we proposed a solution to simplify the process of design
parameter selection by providing intervals of independent design parameters.
In this chapter we develop a comprehensive concept to solve this problem. At first the prob-
lem space is defined theoretically in a problem statement. Then, a data preprocessing step is
introduced which addresses practical problems with the data. Afterwards related work on deter-
mining permissible intervals is examined and used as a basis to create an concept for a solution.
In the end the solution is summarized.

2.1 PROBLEM STATEMENT

Zimmermann et al. [33] define designs or design points as vectors x = (x1, . . . , xp), xi ∈ R, p ∈ Z

where p is the dimensionality of the vector. All possible designs span design space Ωds. Designs
can be evaluated by a performance function f (x), which is not known analytically and, in general,
can be numerically calculated. It calculates a system response z:

z = f (x) (2.1)

No statement is made about the domain of z. In our case, we assume z to be multidimensional,
i.e. z = (z1, . . . , zq), zi ∈ R, q ∈ Z with q being the dimensionality of the system response.
Furthermore, a threshold value fc on the system response is defined. For our purpose, we define
fc = [ f l

c , f u
c ] where the first vector is the lower constraint and the second vector is the upper

constraint on the system response. Thus, we get the equation 2.2:

f l
c 6 f (x) 6 f u

c (2.2)

It is defined that a good design satisfies the equation 2.2. Otherwise designs are designated as bad

17



Chapter 2 Concept Development

Figure 2.1: Solution space consisting of design points divided into good and bad regions with the largest
possible solution box [33].

designs. The solution space consisting of the system responses of designs is divided in good regions
and bad regions. In Figure 2.1 this is shown with an example in two dimensions. Furthermore, the
largest possible box of good designs is shown.
If there is only one design parameter dimension, the desired solution box is a simple interval
with two numbers. With two input dimension, we need two intervals - one for each dimension
- in which all the points predict good designs. This corresponds to a rectangle as depicted in
Figure 2.1. In three dimensions we need three intervals and get an rectangular cuboid, and so
on. This idea generalizes into multidimensional space. Mathematicians call these constructs hy-
perrectangles or n-orthotopes. Eckstein et al. name the construct box. The important property of
such a box of good designs is that the design parameters are independent of each other. Thus,
Zimmermann et. al. define a solution box as

Ω = I1 × I2 × . . .× Ip (2.3)

where Ii = [xl
i , xu

i ], i ∈ [1, p]. Note, that a p-dimensional box can be defined by two p-dimensional
vectors. The superscript l refers to the lower bound of the box and u to the upper bound.

To decide whether a solution box is better than another one, Zimmerman et al. propose the
volume as a metric. Additionally, they define the volume ratios of good and bad regions inside a
solution box as fraction of good designs. However, in our case we want the solution boxes to purely
consist out of good designs, i.e. we do not allow any bad designs in our solution boxes. Therefore,
we propose a conservative metric. Our solution boxes should contain at least one design point,
i.e. boxes that do not contain any design will have a score of minus infinity. Also we want to
punish solution boxes which contain bad designs by a negative score which equals to the amount
of bad designs. Hence, we define a box fitness as

µ(Ω) =


−∞ , if b = 0, g = 0

−b , if b > 0

100(xu
1 − xl

1)(xu
2 − xl

2) . . . (xu
p − xl

p) else

(2.4)
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2.2 Data Preprocessing

where b is the amount of bad and g is the amount of good designs. The volume in the else-case
was multiplied by 100 to have a percentage value.
The box fitness is the metric with which we will compare solution boxes. With the box fitness and
based on the definition of Zimmermann et. al we get the optimization problem:

f l
c 6 f (x) 6 f u

c , f or all x ⊆ Ω (2.5)

µ(Ω)→ max (2.6)

In this thesis, we refer to this optimization process as box maximization.

2.2 DATA PREPROCESSING

In order to provide the process of determining permissible intervals with useful data, we develop
means to address the shortcomings of the provided data. The practical limitations of the data
were stated in Section 1.3. From that, two problems for data preparation arise:

1. Data could contain outliers.

2. Designs can be either sparse or unevenly distributed in the design space.

The first problem is addressed by outlier detection. The second problem results in a need to
perform data augmentation. The resulting data preprocessing pipeline is shown in Figure 2.2).

Figure 2.2: Data preprocessing pipeline.
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2.2.1 Outlier Detection

Naturally, data points which were generated by a different process than the tested process can
skew the results of any analysis performed on the dataset. Since we can not guarantee that the
provided data is free of outliers, there is the need to provide the engineer with methods to find
and remove outliers. The basic way to detect outliers is to plot the dataset in a scatterplot matrix.
However, in large datasets comprised of thousands of samples and many columns, outliers can
not be detected by the human eye easily. Also, scatterplot matrices tend to grow fast and become
cluttering. Therefore, we need to support the engineer in the process of outlier detection. An ad-
ditional reason to remove outliers is the fact that models will be generated based on the data. The
prediction accuracy can be negatively affected by outliers. Therefore, it is necessary to eliminate
outliers as a source of error.
After removing outliers from the initial dataset the data is conditioned for the next preprocessing
step.

2.2.2 Data Augmentation

The second step of the data preprocessing pipeline is concerned with the sparse and uneven
distribution of data in the design space. Sparse datasets are common because it is not possible to
test combinations of design parameters exhaustively. Simulations can take days to successfully
execute and real crashtests are even more time- and resource consuming. As a result datasets
often contain large regions without designs. The behaviour of designs in those areas is uncertain.
This leads to solution boxes with uncertain validity. An example is visualized in Figure 2.3.
To improve the validity of solution boxes, the design space needs to be filled more evenly. Since
the underlying model which generated the data is neither known analytically nor numerically,
the only way to provide information about regions without designs is to interpolate or extrapolate
from the existing dataset. Therefore, a model of the data is needed with which the design space
can be filled. Such models can be created by a machine learning approach. With a model it
is possible to predict designs with arbitrary design parameter combinations. Hence, a model
generation step is proposed.
While creating new designs the question arises how to decide where in the design space to create
new designs. Since the amount of sampling points has to be fixed, points should be distributed
evenly in the design space in order to have the most information about designs. Therefore, there
exists a need for sampling methods which distribute designs evenly in the design space.
Therefore, in summary, data augmentation consists of two steps:

1. Generating a model of the data (Model Generation)

2. Filling the design space by sampling evenly (Design Space Sampling)

After creating new designs, this additional data is added to the conditioned dataset of the preced-
ing step. This is the second step in Figure 2.2.

20



2.3 Determining Permissible Intervals

Figure 2.3: In the provided data certain combinations of design paramers can be missing. As a result, there
are visible gaps (blue) in the design space . Solution boxes comprising this space can not make
any assumption about the validity of a design from these areas.

2.3 DETERMINING PERMISSIBLE INTERVALS

After the data is conditioned and augmented, it can be used to determine permissible intervals.
To explore the problem further, at first we review related work on the topic of determining per-
missible intervals.

2.3.1 Related Work

Harbrecht et al. determine polygons of good regions in solution spaces [12]. However, polygons
do not fulfill the need of design parameters to be independent of eacht other. Zimmermann et
al. on the other hand determine the solution boxes in their paper Computing Solution Spaces For
Robust Design [33]. A stochastic algorithm is proposed which is evaluated in a subsequent paper
On the computation of solution spaces in high dimensions [9]. The algorithm consists of two phases
and two modification steps. The two modification steps, denoted as A and B, have different tasks.
Modification step A removes bad designs from a box until only good designs are present in a box.
Modification step B tries to enlarge the box while allowing for a certain small amount of bad de-
signs to be part of the box. In the first phase of the algorithm the box is enlarged by modification
step B first. Then, new sampling points are generated by Monte Carlo sampling inside that box.
Then the bad designs are removed by the modification step A. The first phase is repeated as long
as the solution box is changing. In the second phase the box is shrinked by applying modification
step A only. This process of iteratively increasing the size of a solution box is visualized in Fig-
ure 2.4.
The runtime differs depending on the runtime of the Monte Carlo sampling which creates new de-
sign points on-the-fly during execution. Zimmermann et al. state that the runtime is in O(vN2 p),
where v is the number of iteration steps, N is the amount of Monte Carlo sampling points gen-
erated in each iteration and p is the number of dimensions. This runtime only holds if the com-
putation of f - the function to generate data points with - is inexpensive, i.e. constant. In our
context f is unknown. Nevertheless, it is possible to generate a model of the provided dataset
which approximates the function f .
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Chapter 2 Concept Development

Figure 2.4: Example behaviour of the algorithm proposed by Zimmermann et al. Top row: phase I, bottom
row: phase II [33]

Figure 2.5: Barriers and bottlenecks are a problem for the algorithm by Zimmermann et al. [33].

Even though the proposed solution works with arbitrary and high dimensions and would be
applicable, the approach has some drawbacks. The authors state that the algorithm can not guar-
entee to find the global optimum because of barriers and bottlenecks. The algorithm starts at a
good design points and extends its borders from there. It is possible that a box can not grow
further if a barrier or bottleneck of bad designs is present. This is visualized in Figure 2.5. The
proposed solutions in this thesis should try to circumvent that problem.
Another important problem with the solution of Zimmerman et al. is that it only provides one
large solution box. We note that in our case we are also interested in other, possibly much smaller
boxes. This provides the engineer with more freedom, as he can choose from multiple design
parameter boxes consisting of permissible intervals. Therefore, the solution in this thesis aims to
find multiple solution boxes, if possible.

2.3.2 Multiple Solution Boxes

An example case which the solution in our thesis should cover is shown in Figure 2.6. It shows
a solution space with three good regions. A naive solution would only find the largest box A.
In our solution we aim to find solution boxes of all clusters, i.e. the boxes B and C. Therefore, a
processing step to cluster regions of good designs is proposed. In summary, the determination of
permissible input intervals consists of two steps:
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2.4 Concept

Figure 2.6: Solution space with three good regions.

1. Separating clusters of good designs spatially (Clustering)

2. Determining the largest box with only good designs in those clusters (Box Maximization)

As a side effect we reduce the computation time, because the subdivision of the whole space into
clusters results in smaller subspaces, where a solution box can be computed more easily.

2.4 CONCEPT

To summarize, in this chapter, we proposed a general approach to find permissible design param-
eter intervals on the basis of a dataset of designs. The pipeline of the approach comprises three
steps:

1. Outlier Detection

2. Data Augmentation

(a) Model Generation

(b) Design Space Sampling

3. Determining Permissible Intervals

(a) Clustering

23



Chapter 2 Concept Development

(b) Box Maximization

The pipeline is visualized in Figure 2.7.
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Figure 2.7: Pipeline of the data flow for the approach to determine permissible intervals.
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3 METHODS

Based on the pipeline developed in the preceding chapter, the necessary methods to solve the sub-
problems of the pipeline are revisited. First, in Section 3.1 outlier detection methods are compared
and proper methods are selected. Then in Section 3.2 the process of data augmentation is exam-
ined, which consists of model generation and sampling methods. Finally, in Section 3.3 we look at
methods to determine permissible intervals, which comprises clustering and box maximization.

3.1 OUTLIER DETECTION

Outliers are data points which deviate significantly from other data points in a dataset. Hawkins
defines an outlier as ‘[. . .] an observation which deviates so much from the other observations
as to arouse suspicions that it was generated by a different mechanism [13]‘. Outliers are also
referred to as anomalies, discordants, deviants and abnormalities [1].
There are two criteria an outlier detection method has to fulfill to fit our purpose: it has to be
designed to be usable with multivariate data and can not assume a specific distribution of data.
In that way it has to be a generic method for different types of data. Preferrably, it should be
interpretable without detailed knowledge about the outlier detection method. This ensures that
an engineer has a higher probability to understand how the outlier detection works.
In his comprehensive book Outlier Analysis Aggarwal states five basic methods for detecting out-
liers [1, Section 1.3]: Probabilistic and Statistical Models, Linear Models, Proximity-Based Models,
Information -Theoretic Models, High-Dimensional Outlier Detection.
Probabilistic and statistical models assume an underlying distribution of the data. A very common
probabilistic method is extreme-value analysis which was originally created for univariate, i.e.
one-dimensional data. A disadvantage of the extreme-value analysis is that it is not good at find-
ing outliers in sparse regions in the interior of a dataset. A typical method is the Z-score where
the standard deviation from the mean of dataset is computed and used as criteria to classify data
points as outliers. We acknowledge that there are ways to use these methods for multivariate
data. But since we can neither assume a normal-distribution nor any other distribution, we skip
those methods.
The main approach of linear models is to project the dataset onto a lower dimensional subspace
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which has the least reconstruction error. If the data is projected and reconstructed, outliers have
a large reconstruction error because they deviate more profoundly from the pattern of the sub-
space. Even though the models are linear in principle, it is possible make them nonlinear with
PCA and specific kernels. Also, deep learning methods such as autoencoders fall in this category.
However, in general the approaches are hard to interpret because the subspace model is a linear
combination of possibly positive or negative coefficients, which might not make sense in terms of
the context of the data.
Information-theoretic models summarize dataset and encode it. Outliers increase the minimum code
length of the summary. A disadvantage in terms of our prototype is the difficulty to interpret the
results. Therefore, this technique is not used.
The two remaining methods are proximity-based and high-dimensional outlier detection. Proximity-
based methods are revisited in more depth in the following section. As a representative for high-
dimensional outlier detection we explain and implement Isolation Forest in Subsection 3.1.2.

3.1.1 Proximity-Based Methods

Proximity-based models classify outliers in terms of their locality to other data points. The main
advantages are that they are easy to implement and easy to interpret due to the spatial interpreta-
tion of the data. Aggarwal distinguishs between three proximity-based methods: distance-based,
clustering-based and density-based [1, Chapter 4].

Distance-Based The main approach of distance-based methods is to calculate the distance of
data points to their k nearest neighbours. There are three distance scores: exact, average and the
harmonic k nearest neighbour score. The exact score adds up the distinct distance values to each
k nearest neighbour. The average score averages the exact score by dividing through the number
of neighbours. Similarly, the harmonic score calculates the harmonic mean between data points.
As a distance measure often the Euclidean distance is used, but this can be defined freely de-
pending on the specific dataset. To distinguish between outliers and regular points, either a score
threshold-based or rank threshold-based method can be used. The score threshold-based method de-
fines a threshold value β. All data points which have distance score of at least β are considered
as outliers. In the rank threshold-based method an amount r of outliers is defined. r data points
with the highest distance score are considered as outliers.
Distance-based methods are more accurate than the clustring-based and density-based because
the have a finer granularity. However, distance-based methods are also less performant, i.e. they
have a higher runtime [1, Section 4.1].

Clustering-Based The idea of clustering-based methods is that clustering solves a complemen-
tary problem to outlier detection. If a data point does not belong to any cluster, it can be regarded
as an outlier. In fact, many clustering algorithms report outliers as a side product. One example
is the DBSCAN algorithm which returns a list of noise data points which do not belong to any
cluster. DBSCAN is explained in more detail in Subsection 3.3.1. In general, in comparison to
distance-based methods, clustering approaches are more performant.
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Density-Based In density-based methods outliers are defined in terms of local density in a data
space. The main difference between density-based methods and clustering-based methods is
that the former partitions the data space and the latter partitions the data. Aggarwal notes that
this approach is very similar to the other two methods and that density-based techniques can
also be presented as distance-based or clustering-based methods. This is why we concentrate on
clustering-based and a distance-based approaches for the software prototype.

3.1.2 Isolation Forest

(a) Separating a regular data point. (b) Separating an outlier.

Figure 3.1: Isolation forest splitting the data space to isolate data points [19]

Isolation forest is a popular outlier detection algorithm which can handle high dimensions and
extremely large datasets [19]. Aggarwal classifies it as an axis-parallel subspace method for high
dimensionsal datasets [1, Subsection 5.2.6]. The algorithm has a linear runtime with a low con-
stant and low memory usage.
An isolation forest consists of a constant amount of isolation trees. In a training phase those isola-
tion trees are generated. An isolation tree is generated by splitting the data space in an arbitrary
dimension with an arbitrary split value. This is done until all data points are isolated. The key
idea is that if the path length of a data point in an isolation tree is lower than the average path
length, then the data point has a higher probability to be an outlier. A data point which lies far
away from other data points (as in Figure 3.1b) is isolated earlier in the tree (i.e. with fewer splits).
A regular point needs many more such splits (as in Figure 3.1a). The average path length of a data
point over all isolation trees is used to calculate an anomaly score. The anomaly score is given by

s(x, n) = 2−
E(h(x))

c(n) (3.1)

where x is a data point, n the amount of data points in the subsample size, E(h(x)) the path length
to x averaged over all isolation trees and c(n) the average path length for unsuccessful search in
a binary search tree (BST). This score takes on values between zero and one. Liu et al. state that
if instances return a score very close to 1, then they are definitely anomalies. If instances have a
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score much smaller than 0.5, then they are quite safe to be regarded as normal instances. If all the
instances return a score ≈ 0.5, then the entire sample does not really have any distinct anomaly.
The algorithm takes two arguments. The first is the amount of trees the forest should generate.
Liu et al. show that for most datasets the anomaly scores converges with less than 100 trees. The
other argument is the size of the used subsample of the dataset during the training phase. This
subset is used to generate the current tree. Subsampling helps avoiding common problems in out-
lier detection such as swamping and masking. Swamping is the phenomenon of misclassifying
regular points as outliers. Masking is the problem that outliers in outlier clusters in large datasets
get classified as regular data points. Based on their emprical tests on benchmark datasets, Liu et
al. recommend 256 as a subsampling size. To get a binary classification, a threshold value for the
anomaly score between zero and one value has to be choosen.

3.2 DATA AUGMENTATION

As explained in Subsection 2.2.2 the data augmentation process consists of two steps: the gener-
ation of a model of the dataset and the equidistant sampling of the design space. We close this
section with short notes on hyper-parameter optimization and evaluation metrics

3.2.1 Model Generation

Model generation is the first step of data augmentation. A model of the data is used to predict the
system response for different combinations of design parameters. This is needed because often
sparse areas in the data exist.

Linear Regression

Linear regression models the relationship between independent and dependent variables of a
dataset with a linear function. A dataset D ∈ Rn×d+dy contains data points which have a feature
vector (independent variables) xi ∈ Rd and a output vector (dependent variables) yi ∈ Rdy . To
simplify the presentation we assume dy = 1 in the following. The generalisation to an arbitrary
number of output dimensions is straightforward. A linear function is given by

fc(x) = c0 + c1x[1] + c2x[2] + . . . + cdx[d] (3.2)

The goal is that y f
i := f (xi) approximates yi as good as possible. A requirement is that D contains

n > d + 1 independent data points. We set up the least-square minimization problem

LD(c) =
n

∑
i=1

(y f
i − yi)

2 → min (3.3)

Both y f
i and yi are known. The only unknown variables are the constants cj of Equation 3.2.

It is not difficult to see that this minimization problem is quadratic with respect to c. Hence,
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the problem is reducible to the solution of a system of linear equations. There exist efficient,
so called, direct methods to solve linear equations based on Cholesky-, QR-, or singular-value-
decomposition (SVD) [23, Chapter 10.1]. For that reason, given a dataset, a linear regression
model is typically significantly faster to compute than other kinds of ML-models which usually
require computationaly more involved algorithms to find the best fit.

Polynomial Regression

Polynomial regression models the same relationship as linear regression except that a polynomial
function instead of linear function is used. A polynomial function of degree k can be written as

pc(x) = ∑
l1+...+ld≤k

cl1 ...ld x[1]l1 . . . x[d]ld (3.4)

The problem of polynomial regression is reducible to a linear regression problem. The idea is to
extend the feature vectors xi by the monomials of degree two or higher, appearing in Equation 3.4,
to a new polynomial feature vector

x′i = (xi[1], . . . , xi[d], . . . , x[1]l1 . . . x[d]ld , . . .) (3.5)

with x′i ∈ Rd′ . Here d′ is the number of monomials appearing in definition pc. We get the linear
regression problem by using the polynomial feature vector for linear regression.

pc(x) = f (x′) = c′0 + c′1x′[1] + c′2x′[2] + . . . + c′d′x[d
′] (3.6)

A linear regression problem, again, results in a linear equation system which can be efficiently
solved, for example, by using SVD. A simple example of the polynomial features reshaping is
shown with d = 2 and k = 2. The polynomial function and the resulting polynomial feature
vector are

pc(x) = c00 + c10x[1] + c01x[2] + c20x[1]2 + c11x[1]x[2] + c02x[2]2

x′i = (xi[1], xi[2], xi[1]2, xi[1]xi[2], xi[2]2).

Hence, we get:

fc(x′) = c′0 + c1x′[1] + c′2x′[2] + c′3x′[3] + c′4x′[4] + c′5x′[5]

This linear regression problem has five unkown constants (c′1 to c′5) for five features. With the
help of the well known formula for combinations with repition it can be shown that the number of
polynomial features is

d′ =
(

d + k
k

)
− 1 (3.7)

Already for small values of k this number is significantly larger than the number d of original
features. Thus, in practice the runtime of polynomial regression grows fast with high degrees.
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Figure 3.2: A simple neural network with an input layer (three features), two hidden layers and one output
layer [15].

Artificial Neural Networks

Artifical neural networks (abbreviated ANN) are inspired by the function of neurons in the brain
of vertrebrates [18]. The architecture of a simple ANN is visualized in Figure 3.2. It consists of an
input layer, one or several hidden layers and an output layer [22]. The white dots represent the
neurons and the arrows between the neurons represent the axons in the brain. The connections
of two consecutive layers of an ANN are defined as relatively simple functions. Hence, an ANN
is a composition of functions which can be expressed as

fc(x) = fl+1( fl(. . . f1(x) . . .)) (3.8)

with l being the amount of hidden layers. fl+1 represents the connections between the last hidden
layer and the output layer and f1 the function between the input layer and the first hidden layer.
The functions between the layers are defined as

fr(x) = a(wx + b), a : R→ (3.9)

where a is a nonlinear activation function, b is a bias term and ur is the number of units in the layer
r. a is a relatively simple function which is applied component-wise on the vectors. Examples are
the relu, sigmoid and tanh function. w and b are the new constants which we denoted as c in
the case of linear and polynomial regression. Similar to the minimization problem of linear and
polynomial regression (Equation 3.3), the goal with artificial neural networks is to minimize a
cost function:

C(w, d) =
n

∑
i=1

(y f
i − yi)

2 → min (3.10)

The difference to linear and polynomial regression is that in general this problem does not lead
to a quadratic minimization problem with respect to the parameters w and d. A family of iter-
ative methods to solve such general non-linear minimization problems is the gradient descent
algorithm and its variations. The so called backpropagation algorithm is an implementation of
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gradient descent, designed for neural networks, which leverages their particular compositional
structure.
Neural networks have proven very useful for problems like image and speech recognition. How-
ever, the training process to generate a model is difficult. The training process requires the en-
gineer to set many hyper-parameters. These hyper-parameters include for example the number
of epochs the network should be trained, the learning rate of the gradient descent algorithm, the
number of hidden layers and the number of units in those layers. No general rules for the setting
of those parameters exist because they depend on the problem at hand. Therefore, we briefly look
into techniques for hyper-parameter optimization.

Hyper-Parameter Optimization

The straightforward way to choose appropriate hyper-parameters is to try out different combi-
nations and choose the best one. The exhaustive testing of all hyper-parameter combinations is
called grid search. For this strategy to work the engineer sets intervals with values for each hyper-
parameter. Bergstra et al. state that grid search is the most widely used technique for hyper-
parameter optimiziation [3]. It is used since the 1990s [14]. The main problem with grid search is
its runtime. The amount of combinations to test grows exponentially with hyper-parameters. In
contrast, the random search approach does not have this problem. This method fixes the amount
of trials to an amount much lower than the trials grid search would use. Bergstra et al. showed
empirically and theoretically that random search is more efficient than grid or manual search [3].
Hutter et al. recommend it as a baseline approach [14]. Besides grid and random search other
more complex hyper-parameter-optimization strategies exist, e.g. bayesian, gradient-based and
evolutionary optimization [14].

Evaluation Metrics

In linear and polynomial regression as well as artificial neural networks the least-square error
between the dataset and the model is to be minimized. The lower the least-square error is, the
better a model approximates the dataset. Hence, this value can be used to compare and determine
the model which fits a given dataset best. However, the least-square error is difficult to use as a
general metric. The least-square error depends heavily on the magnitude of values of the dataset
in different dimensions which is why the sum of the least-square error can be an arbitrary number.
To have a metric which is easier to interpret and can be used to evaluate a model more generally,
the R2 score (coefficient of determination) is used. It is a number for assessing the goodness-of-fit
of a regression. It is calculated with the ratio between the sum of squares total (SQT) and sum of
squares explained (SQE):

R2 = 1− ∑ yi − ŷi

∑ yi − ȳi
(3.11)

where yi is the measured value, ŷi is the value predicted by the model and ȳi is the average value
of the measured values. If the R2 score is 1, the model fits the dataset perfectly. If it is 0, the model
behaves like it would if it always returned the arithmetic mean of for all data points. A negative
score signifies that the model performs even worse than arithmetic averaging. Such a model has
to be discarded.
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3.2.2 Sampling Methods

With a model of the dataset it is possible to generate new data points. Since we want to distribute
design points evenly in the whole design space, a method is needed which creates data points in
a multidimensional space (hyperrectangle) accordingly. In this thesis, we refer to such a method
as a sampling method. Likewise, the data points created by a sampling method are called sampling
points.

Grid Sampling A simple sampling method is to arrange the points in a grid. However, Grid
sampling has the disadvantage that it constraints the number of points which can be generated
for a data space. This is because it has to be possible to take the n-th root of the number of
sampling points where n is amount of dimensions of the data space. Otherwise the points can not
be distributed evenly.

Random Sampling Another simple sampling method is Random sampling. The approach is to
distribute points randomly in the data space. Even though this approach allows for the creation
of an arbitrary amount of sampling points, the problem is that these points tend to distribute
unevenly. This can be seen in Figure 3.3a.

(a) Uniformly distributed pseudorandom data points. (b) Data points distributed by Sobol sequence.

Figure 3.3: Comparison of 10 000 data points generated by Random sampling and Sobol sampling.

Sequences of successive points with a preferrably equal distance to their neighbour points are
called low-discrepancy sequences in mathematics [6]. They are also referred to as quasi-random num-
ber sequences.

Sobol Sampling An example for such a sequence is the Sobol sequence [28]. Antonov and
Saalev proposed an efficient algorithm to generate Sobol sequences by leveraging XOR bit opera-
tions [2]. The first 10 000 data points of the Sobol sequence are shown in Figure 3.3b. In compari-
son to uniformly distributed pseudorandom numbers, the Sobol numbers are visibly more evenly
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distributed (Figure 3.3). In this thesis, the Sobol sequence is used to generate sampling points and
we refer to this process as Sobol sampling.

Besides the Sobol sequence other low-discrepancy sequences exist. A non-exhaustive list includes
the Halton sequence [10], the Faure sequence [8] and the van Corput sequence [5].

3.3 DETERMINING PERMISSIBLE INTERVALS

The process of determining permissible intervals consists of a clustering step and a box maximiza-
tion step. Clustering groups good designs into regions of good designs, so that an engineer can
choose from multiple sets of permissible intervals. Afterwards box maximization algorithms on
the clustered data is used to determine permissible intervals for the engineer.

3.3.1 Clustering

Clustering is the process of grouping similar data points together. Aggarwal defines the basic
problem of clustering as follows:

Given a set of data points, partition them into a set of groups which are as similar as
possible [1].

In his book Data Clustering Aggarwal states that probabilistic / generative models, density-, grid-
and distance-based methods for clustering exist.
A popular distance-based algorithm is the k-means algorithm [21]. The only parameter is a num-
ber k which defines the number of clusters into which the data points should be grouped. Though
widely researched and applied, the algorithm is not applicable in our case because we can not
make guess on how many clusters exist in our datasets.
Density-based algorithms comprise algorithms which group data poitns together depending on
the spatial distribution. A popular algorithm for density-based clustering is DBSCAN [20].

DBSCAN

DBSCAN takes two arguments: minPts and eps. MinPts is the minimum amount of points which
need to be in a distance of eps to each other to be regarded as a cluster. This divides the data
points into three kinds which can be seen in Figure 3.4. There are core objects (red) which fulfill
the aforementioned criteria. Density-reachable points do not fulfill the criteria but are reachable
through a core object. They belong the cluster which the core objects span. Finally, there are
noise points (blue) which are no core objects and are not density-reachable. The complexity of the
algorithm is O(n log n).
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Figure 3.4: DBSCAN divides data points in three categories: core points (red, A), density-reachable points
(yellow, B, C) and noise (blue, N) [4].

3.3.2 Box Maximization

The main problem to be solved in this thesis is the box maximization problem developed in Sec-
tion 2.1. Two approaches will be investigated in this thesis: an exact solution and heuristic solu-
tions.

Exact Solution

In their paper The Maximum Box Problem and Its Application to Data Analysis Eckstein et al. propose
a branch-and-bound algorithm as an exact solution to a problem which is equivalent to the one
proposed in Section 2.1 [7].
The algorithm splits the data space for every negative point along all dimensions and creates sub-
problems. Figure 3.5 shows an example in two dimensions where there are eight possible ways
of constructing subproblem boxes depending on a negative point. Those subproblems are kept
in a queue. In each iteration a subproblem box is taken from the queue and checked if it already
is a homogenous box, i.e. it only contains positive points (good designs). If so, the subproblem
box is compared to the current best solution box and kept if the box is better. If the subproblem
box only contains negative points (bad designs), the box is discarded. An upper bound function
is implemented, which estimates the best possible solution a subproblem box could create. If the
upper bound of a subproblem box cannot achieve a better solution box than the current best box,
it is discarded. If not, the subproblem box is further split into subproblems and the newly created
subproblems are added to the queue. If the queue is empty, the algorithm terminates.
Eckstein et al. show that the problem of finding the maximum box in a n-dimensional space in
general is NP-hard. At the same time they prove that their algorithm will find the largest possible
box. Even though the proposed approach suggests intelligent ways of constructing subproblem
boxes and choosing negative split points to reduce runtime, in the worst case runtime still grows
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Figure 3.5: A negative point can be used to construct eight different subproblems [7].

rapidly like O(d2nb) with nb being the amount of negative points (bad designs) and d the dimen-
sionality of the data space. Therefore, it is viable to look for approximate solutions which can
calculate solution boxes in arbitrary cases.

Heuristic Solutions

Heuristics can be seen as cost-efficient rule of thumbs which guide actions of an agent [25]. Pearl
defines heuristics as

[. . .] criteria, methods, or principles for deciding among several alternative courses of
action [which] promise to be the most effective in order to achieve some goal. They
represent compromises between two requirements: the need to make such criteria
simple and, at the same time, the desire to see them discriminate correctly between
good and bad choices [25].

The idea of heuristic solutions is to create an algorithm which solves a computational problem
where the exact solution is not possible or too difficult to calculate in a reasonable amount of time.
In the area of optimization problems, heuristics guiding the process of creating those algorithms
are called metaheuristics. Sörensen defines:

A metaheuristic is a high-level problem-independent algorithmic framework that pro-
vides a set of guidelines or strategies to develop heuristic optimization algorithms
[30].

Many metaheuristics exist; well-known are for example genetic / evolutionary programming,
simulated annealing and ant colony optimization [29]. In this thesis we use the metaheuristic
simulated annealing to create a box maximization algorithm.

37



Chapter 3 Methods

Simulated Annealing is inspired by the annealing process in metallurgy [16]. In that process
the temperature of a material is cooled and heated under control to achieve specific properties.
The computational heuristic simulated annealing was introduced by Kirkpatrick et al. and first
applied to the travelling salesman problem. Simulated annealing works as follows: in every step
of the algorithm a neighbour state of the current state is calculated. This neighbour state is used
as a new current state with a predefined acceptance probability. The temperature of the system
cools down with every step. Neighbour states can vary from the original state in dependance of
the temperature. If the temperature is higher, neighbour states are much more different. If it is
lower, the neighbour states also differ less. A objective function has to be defined which measures
the quality of a state. The last current state is returned.
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In the preceding chapter the methods to solve the main problems of data preprocessing and deter-
mining permissible intervals were revisited. In this chapter the implementation of the software
prototype is explained in detail. Furthermore, the user workflow is sketched on the basis of
screenshots.

4.1 IMPLEMENTATION SPECIFICS

The software prototype is written in the programming language TypeScript and uses the frame-
work Angular 8. The application is a full frontend application. Therefore, no server backend is
needed. For the graphical user interface GoldenLayout was used. It allows the arbitrary arrange-
ment of tabs in rows, columns and stacks. The prototype was implemented as a npm package
and Angular library which allows for the integration and reuse in multiple applications. The ap-
plication uses plotly.js to generate graphs and visualizations.
Based on the pipeline (Figure 2.7) developed in Chapter 2, we present the implementation of the
distinct steps of the prototype.

4.1.1 Data Preprocessing

Outlier Detection

On the basis of the investigation in Section 3.1 three outlier detection methods were choosen and
implemented: Isolation forest, K-Nearest Neighbour and DBSCAN.
Since in many cases the provided data is high dimensional, we implemented isolation forest for
outlier detection. The implementation was published in the npm package isolation-forest [11]. As
stated in Subsection 3.1.2, isolation forest takes two arguments. For the amount of trees we choose
1 000. The subsampling size was set to 256, or the dataset if it is smaller than 256. Since engineers
want a binary classification into outliers and regular points, in our implementation there is the
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need to set a threshold value on the anomaly score between zero and one. This value has to be set
by the engineer and is implemented as a slider panel.
As a distance-based outlier detection method we implemented k nearest neighbour approach with
average distance scores and a binary classification on the basis of a threshold (see Section 3.1.1).
In this implementation data is normalized to the range [0, 1] in each parameter dimension. K
nearest neighbour needs two parameters; the amount of neighbours k and a threshold β. As a
distance function the Euclidean distance is used. Since data is normalized, the largest possible
average distance to a neighbour is

√
d where d is the number of dimensions of the data. This is

the maximum value which an engineer can set for this value.
Furthermore, we use the DBSCAN algorithm presented in Subsection 3.3.1 for outlier detection.
In our implementation data is normalized to the range [0, 1] in each parameter dimension. As
stated in Subsection 3.3.1, DBSCAN requires two parameters (eps and minPts) to be set by the
engineer. Since data is normalized, the largest distance to a neighbour can be

√
d with d being

the number of dimensions of the data. Therefore, the maximum value an engineer can set for eps
is
√

d. An implementation of the DBSCAN algorithm was used from the density-clustering npm
package [17].

Data Augmentation

For the model generation two different methods were implemented: neural networks and polyno-
mial regression. As a framework for the creation of neural networks Tensorflow.js was used. For
the implementation of polynomal regression the npm package regression-multivariate-polynomial
was used [31]. For the generation of models the data is split into training and test set. For hyper-
parameter optimization grid search and random search was implemented. To choose the best
model a selection process was implemented which chooses the best model depending on the R2

score on the test set (see Section 3.2.1). For the sampling methods Grid sampling and Sobol sam-
pling was implemented. Grid sampling was implemented without further sources. As a basis
for the calculation of the Sobol sequence the npm package sobol was used to implement Sobol
sampling [24].

4.1.2 Determining Permissible Intervals

Clustering

As a density-based clustering algorithm DBSCAN is used to cluster regions of good designs.
DBSCAN needs values for minPts and eps. Even though the user can change the parameters to his
needs, we set a default values for those parameters which worked fine in the tests we conducted.
We set minPts = 2 and eps = 2 d

√
#designs where d is the number of dimensions and # designs

the amount of design points. The factor two serves as confidence factor to rather include than to
exclude neighbour designs.
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Box Maximization Algorithms

Exact Max Box In Subsection 3.3.2, we presented an exact solution to determine permissible
intervals. The algorithm was implemented as stated in the paper by Eckstein et al. [7]. From now
on we refer to this algorithm as Exact Max Box. Even though the box maximization problem is
NP-hard, we implemented it to have an upper bound for the best possible solution, at least for
small instances of the problem.

Since an exact solution for a ‘large‘ instance of an NP-hard problem is practically uncomputable,
we implemented two heuristic algorithms which merely try to find an approximate solution. The
simulated annealing metaheuristic is used construct an algorithm which can provide solution
boxes in more difficult cases, e.g. in high dimensions and with many design points. We refer
to this algorithm as Anneal Max Box. Secondly, a naive random algorithm Random Max Box was
implemented which serves as lower bound benchmark for the Anneal Max Box algorithm.

Anneal Max Box The simulated annealing metaheuristic described in Section 3.3.2 was used to
create a heuristic algorithm. The algorithm needs the amount of iterations as an argument. The
amount of iterations is used for the calculation of the current temperature in each iteration. As a
start temperature t0 the amount of desgin points is used. The temperature decreases exponentially
with each iteration i:

t(i) = t0 e−10 i
imax

where i refers to the current iteration and imax is the amount of iterations the algorithm performs.
In the context of our box maximization problem a state is a box. A neighbour state is a box
which is derived from the current box. In addition to the current box we save the best box ever
discovered. We derive neighbour boxes both either of the current box or the best box with equal
probability. A new neighbour box is generated from an existing box by translation and scaling.
The maximum scaling factor is adjustable through a parameter. By default the box is scaled in
the interval [0.66, 1.5]. The translation depends on the current temperature and is drawn from a
normal distribution with standard deviation of 1.5 t(i)

t0
which is multiplied by the length of the

data space in the translation dimension. The acceptance probability for changing the current box
to a new box is given by

P(B, B′, t) =


1 , if n′ < n

1 , if n′ = n, p′ ≥ p

e−
n′−n
k1t e−

p−p′
k2t else

where B is the current box, B′ is the new derived neighbour box of B, n and n′ are the number of
negative designs in B and B′ respectively and p and p′ the amount of positive desings in those
boxes. The acceptance probability can be explained as follows: if the new box ist better than the
current box, we accept it. Even if the box is worse, we sometimes accept it. The probability to
accept a worse box approaches zero if the temperature approches zero. The particular form of
the else-case in the definition of the acceptance probability is motivated by the formula for the
Boltzmann distribution from statistical mechanics. The values k1 and k2 were set to one in this
implementation.
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After imax iterations the algorithm terminates and returns the best box.

Random Max Box chooses for each dimension two values randomly. The lower value is as-
signed as a minimum value for that dimension and the higher value as a maximum value. One
parameter is the number of iterations. For every iteration a random box is generated and com-
pared to the current best solution box. If the newly created box has a higher box fitness, it replaces
the current best solution box.

Both heuristics have an in-built mechanism to run the algorithm repeatedly. This additional pa-
rameter is called trials. By default, the amount of trials is set to 3d where d is the amount of design
parameter dimensions. This helps the algorithms to converge.
Furthermore, the two heuristics do not have the problem Zimmermann et al. stated in their so-
lution: in both algorithms the boxes are able to jump to arbitrary positions in the design space.
Thus, the barrier / bottleneck problem described in Subsection 2.3.1 does not occur with these
algorithms.
All three algorithms are written conservatively. This means that every solution box needs sup-
porting design points. A box with a specific minimum or maximum value has to posess at least
one value of one design point with that value in each dimension. A box is not allowed to be big-
ger than its points. The algorithms are implemented to fulfill this condition.
All algorithms use the box fitness from Equation 2.4 as a metric to determine the best solution box
by comparing boxes based on their box fitness.

4.2 USER WORKFLOW

In this section we describe how the software prototype can be used. Figure 4.1 shows the graph-
ical user interface of the software protoype. All main actions can be triggered by right-clicking
on the table on the left to open a context menu. The context menu contains entries for opening
pop-up windows (outlier detection, plot creation) and creating new tabs (model generation, de-
termining permissible intervals). In the beginning the table is empty and the user loads a CSV
files into the application via the entry Import Data. The application then displays the dataset in
the table and generates a scatterplot matrix as an overview which can be seen in Figure 4.1 on
the bottom in the middle. In general, the user can resize and arrange tabs to suit his needs. The
user can create custom plots like the 3D plot on the top in the middle. To do this he chooses the
entry Create Plot in the context menu. All plots are connected to the table via a linking and brush-
ing mechanism. Selections in the table, highlighted with a teal background color, are highlighted
in orange in the plots. Furthermore, outliers are highlighted in the table and in the plots in red
color. Outliers can be either detected with the outlier detection methods via Detect Outliers or set
manually through the checkbox in the data table. All outliers can be conveniently deactivated. If
data rows are deactivated, they are removed from all plots and not used for any calculations of
the software. It is also possible to deactivate data rows manually.
The model generation component can be seen on the right in a dedicated tab. On top it shows
all available models and detailed information about them. An important measure is the R2 score
which is shown in either red, orange, yellow or green depending on the quality of the model.
Displayed below is an assessment of the current active model with a predicted / measured graph
as a further indicator of model quality.
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4.2 User Workflow

Figure 4.1: Typical GUI view of the software prototype.

Figure 4.2: Left: Visualisation of the design space with good and bad designs.
Right: GUI for determining permissible intervals.
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Figure 4.2 shows a different view of the application which focuses on the process of determining
permissible intervals. On the right the component for determining permissible intervals is dis-
played. On the top a parallel coordinates plot shows the real design points which generated the
current active model. On the system responses axes the user can set constraints. Constraints can
also be set on the input elements below the table. The table shows the calculated solution boxes
and visualizes each design parameter dimension with red and green bars. Additionally, the per-
missible intervals are displayed with numbers on top of the bars. Each scenario also shows the
box fitness of the solution box. On the bottom an accordion menu contains the specific setting
options for data augmentation, clustering and the box maximization algorithms. If desired, it is
possible to visualize the behaviour of the box maximization algorithms in a dedicated tab. On the
left the solution space with good and bad designs is displayed. This works for one, two and three
dimensions. For solution spaces with higher dimension, the first three design paramter dimen-
sions are displayed. The graph allows to toggle positive and negative designs as well as cluster
boxes and solution boxes. In complex solution spaces with three or more dimensions this helps
to interpret the results.
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5 COMPONENT-WISE EVALUATION

In the preceding chapter we described the implementation of the software prototype. In this
chapter outlier detection, clustering and box maximization methods are evaluated. An overview
over the used datasets and functions for data generation can be found in Appendix A.

5.1 OUTLIER DETECTION

Outlier detection is the first data preprocessing step of the prototype (see Figure 2.2). To evalu-
ate the outlier detection methods, three datasets are being used: the Identity dataset (A.2.2), the
SCALE dataset (A.1.1) and the US-NCAP dataset (A.1.2). All datasets contain outliers:

1. The Identity dataset is shown in Figure 5.1a. It has one design parameter and one system
response. Nine outliers deviate from the diagonal line.

2. The SCALE dataset has twelve design parameters and two system responses. One outlier
is known. In the plot in Figure 5.1b it has the value (0, 0.75).

3. The US-NCAP dataset consists of 27 design parameters and twelve system responses. It
has 118 known outliers which are visualized in the top row in Figure 5.1c. The outliers have

(a) Identity dataset (b) SCALE dataset (c) US-NCAP dataset

Figure 5.1: Three evaluation datasets and their outliers.
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a value of 2 × 1030 on their system responses parameters. They divide the design space
heavily in two extremes.

Since all outlier detection methods need parameters to yield results, in this evaluation good values
are choosen in a fixed amount of time with trial and error. The quality of the results is measured
in Precision, Recall and F1-Score:

Precision =
TruePositives

TruePositives + FalsePositives
(5.1)

Recall =
TruePositives

TruePositives + FalseNegatives
(5.2)

F1Score = 2× Precision× Recall
Precision + Recall

(5.3)

True Positives are outliers which get classified as outliers by the detection algorithm. True Negatives
are regular points which are correctly classified as regular points. False Positives are regular points
which get mistakenly classified as outliers. False Negatives are outliers which do not get classified
as outliers. In our context, precision is the fraction of correctly classified outliers among all design
which were classified as outliers. Recall is the fraction of correctly classified outliers from the
amount of correctly classified outliers and the regular points which were mistakenly classified as
outliers. The F1 Score is the harmonic mean between precision and recall.

5.1.1 K Nearest Neighbour

In the Identity dataset k nearest neighbour outlier detection finds all outliers with k = 4 and
distance threshold = 0.05. Thus, precision, recall and F1 score are one. In the SCALE dataset it
finds all outliers with parameters k = 2 and distance threshold = 0.68. It misclassifies 7 regular
points as outliers. The resulting precision is 0.125, recall is 1 and F1 score is 0.18. In the US-NCAP
dataset it finds all outliers with parameters k = 200 and distance threshold = 2.75. Thus, precision,
recall and F1 score are one.
Results are visualized in Figure 5.2 and summarized in the table below:

kNN
Dataset Precision Recall F1 Score
Identity 1 1 1

Scale 0.125 1 0.18
US-NCAP 1 1 1

5.1.2 DBSCAN

In the Identity dataset DBSCAN clustering outlier detection finds all outliers with minPts = 4 and
eps = 0.05. Thus, precision, recall and F1 score are one. In the SCALE dataset it finds all outliers
with minPts = 2 and eps = 0.68. Five regular points get misclassified as outliers (False Positives).
The resulting precision is approximately 0.17, recall is one and F1 score is approximately 0.29. In
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5.1 Outlier Detection

(a) Identity dataset (b) SCALE dataset (c) US-NCAP dataset

Figure 5.2: Results of K Nearest Neighbour outlier detection on three datasets. Parameters were choosen so
that all outliers were found (i.e. Recall = 1).

(a) Identity dataset (b) SCALE dataset (c) US-NCAP dataset

Figure 5.3: Results of DBSCAN clustering outlier detection on three datasets. Parameters were choosen so
that all outliers were found (i.e. Recall = 1).

the US-NCAP dataset all outliers are found with minPts = 120 and eps = 3. Hence, precision,
recall and F1 score is one.
Results are visualized in Figure 5.3 and summarized in the table below:

DBSCAN
Dataset Precision Recall F1 Score
Identity 1 1 1

Scale 0.17 1 0.29
US-NCAP 1 1 1

5.1.3 Isolation Forest

In the Identity dataset isolation forest finds all nine outliers given an intensity value 0.56. It mis-
classifies five regular points as outliers at the ends of the distribution (False Positives). Therefore,
precision is 0.64, recall is one and F1 score is 0.78. We see that isolation forest performs bad at the
beginning and the end of data spaces. These are the areas where the misclassification happens. In
the SCALE dataset isolation forest finds the outlier but misclassifies 7 regular points as outliers.
The resulting precision is 0.125, recall is one and F1 score is 0.18. In the US-NCAP dataset isola-
tion forest finds all 118 outliers with an intensity value 0.44. Hence, precission, recall and F1 score
are one.
Results are visualized in Figure 5.4 and summarized in the table below:
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(a) Identity dataset (b) SCALE dataset (c) US-NCAP dataset

Figure 5.4: Results of Isolation Forest outlier detection on three datasets. Parameters were choosen so that
all outliers were found (i.e. Recall = 1).

Isolation Forest
Dataset Precision Recall F1 Score
Identity 0.64 1 0.78

Scale 0.125 1 0.18
US-NCAP 1 1 1

5.1.4 Summary

kNN DBSCAN Isolation Forest
Dataset Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
Identity 1 1 1 1 1 1 0.64 1 0.78

Scale 0.125 1 0.18 0.17 1 0.29 0.125 1 0.18
US-NCAP 1 1 1 1 1 1 1 1 1

The evaluation of outlier detection methods yields the following insights. First, parameters heav-
ily depend on the dataset and the outliers to be found. Thus, there is no general rule for parameter
selection. Also, the higher the amount of dimensions of the dataset in which outliers should be
found, the higher the values of distance for kNN and eps for DBSCAN have to be choosen. This
is consistent with the observation in Section 4.1.1 that the maximum distance value for kNN and
the eps value for DBSCAN grows with

√
d, where d is the number of dimensions of the data.

More dimensions with noise make it more difficult to differentiate between outliers and regular
points. All outlier detection methods had problems to classify the outlier of the SCALE dataset
(Subsection A.1.1). This fits because the dataset contains real crash test data which can contain
noise in the data. In general, we see that all outlier detection methods perform equally good on
the Identity and US-NCAP dataset except for isolation forest on the Identity dataset. This fits to
the fact that isolation forest is a high-dimensional outlier detection method, which can not handle
two-dimensional data well.
For an engineer, it is difficult to choose parameters for kNN and DBSCAN because in both cases
the two parameters are interacting with one another and knowledge about the underlying algo-
rithm is necessary. Isolation Forest on the other hand only needs an intensity value which can
be understood and used intuitively with a slider panel. For practical reasons, therefore, Isolation
Forest is favoured.
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5.2 CLUSTERING

Clustering is the second step in determining permissible intervals (see Figure 2.7). It enables the
possibility to provide the engineer with more than one set of permissible intervals, i.e. more than
one solution box. As described in Subsection 3.3.1, the prototype uses DBSCAN to find clusters
of good regions.
The Rosenbrock function was used to generate 400 data points with Sobol sampling. The function
is defined as:

f (x, y) = (a− x)2 + b(y− x2)2 (5.4)

with a = 1 and b = 100. Parameters x and y are design parameters and the function value is
the system response. We use two constraints on the system response: 0 ≤ f (x, y) ≤ 500 and
500 ≤ f (x, y) ≤ 4000. As a result, we get the distribution of good and bad design points seen
in Figure 5.5. In the first case one cluster should be found, while in the second case there are
three clusters to be found. DBSCAN, with the heuristically choosen values for eps and minPts (as
defined in Section 4.1.2), finds the clusters successfully. In Figure 5.5, bounding boxes are drawn
around the clusters. A bounding box of a set of data points is the box of points which is spanned
by the minimum and maximum values of all data points in each dimension.

(a) Design space with one good region.
Constraints: 0 ≤ f (x, y) ≤ 500

(b) Design space with three good regions.
Constraints: 500 ≤ f (x, y) ≤ 4000

Figure 5.5: DBSCAN finds all clusters properly. Bounding boxes (pink) are drawn around clusters of good
designs.

Furthermore, in our tests it came to know that DBSCAN clustering took more than 2 hours to ter-
minate with 50 000 data points. Since DBSCAN is widely used and a well-researched algorithm,
we refer to Subsection 3.3.1 and references therin for further information about its performance,
runtime, advantages and disadvantages.

5.3 BOX MAXIMIZATION

Box maximization is the third step in determining permissible intervals (see Figure 2.7). In this
section we test the three proposed box maximization algorithms: Exact Max Box, Anneal Max
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Figure 5.6: Three design spaces sampled using the Rosenbrock function with 100, 500 and 10 000 data points
respectively and constraints 0 ≤ f (x, y) ≤ 500. The largest possible solution box can be approxi-
mated more accurately if the underlying function is approximated by more designs.

Box and Random Max Box.
In this evaluation box maximization problems are generated using functions. First, a function is
used to create data points. Then appropriate constraints on the system response are choosen de-
pending on the focus of the experiment. Because the underlying function is known, this approach
allows the analytical computation of the largest solution box which is used as a benchmark.
We also vary the amount of data points to find out how many data points per dimension are nec-
essary to create solution boxes with a high box fitness. Clearly, solution boxes heavily depend
on the amount of data points. In a design spaces with more designs, solution boxes make us of
more information. The border between good and bad designs gets represented more accurately.
Figure 5.6 shows this using the Rosenbrock function.
Likewise we test two sampling methods for distribution of data points in the design space: Grid
sampling and Sobol sampling. With it we see how solution boxes are affected by the way points
are distributed in the design space.

Therefore, in this evaluation the following four independent variables are varied:

• Sampling Points (i.e. number of designs)

• Sampling Methods (Grid sampling, Sobol sampling)

• Box Maximization Problems (Linear Problems, Nonlinear Problems)

• Box Maximization Algorithms (Exact Max Box, Anneal Max Box, Random Max Box)

The first dependent variable which is measured in this evaluation is the box fitness. The second
dependent variable is the runtime it takes for the algorithm to compute a solution box. Hence,
there are two dependent variables:

• Runtime (in seconds)

• Box Fitness (Range: [0,100])

Tests were carried out on a Intel(R) Core(TM) i5-4210M CPU @ 2.60GHz, 16GB RAM.
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5.3.1 Linear Problems

A linear box maximization problem is created by using a sum function. It is defined as

f (x) =
n

∑
i=1

xi, xi ∈ [0, 1], n ∈N 6=0 (5.5)

with n being the number of dimensions of the vector x (Section A.2.1).

A constant value for the box fitness should be specified which is then used as an analytical bench-
mark. Therefore, we have to set a constraint on the sum function value (system response) in a
way that the box fitness equals our desired value. This constraint differs with the amount of di-
mensions. In Section A.3 we assume f l

c = 0 and show that the upper constraint f u
c depends on

the box fitness µ with f u
c = p p

√
µ

100 . Thus, the constraints on the sum function in general needs to
be

fc =

[
0, p p

√
µ

100

]
(5.6)

where µ can be defined as one wishes.

2D Sum Function

In this section we use the two-dimensional sum function (i.e. p = 2) and we want to specify a

box fitness of 50. With Equation 5.6 the necessary constraint is 2
√

50
100 ≈ 1.414213562373095. In

Figure 5.7 the solution space is visualized. Runtime constraint is set to one hour. The heuristic
algorithms are executed 9 times in a row to calculate an average box fitness value.

(a) 100 designs. (b) 2.500 designs.

Figure 5.7: Data: 2D Sum Function, Algorithm: Exact Max Box, Constraints: 0 ≤ f (x) ≤ 1.4142

Exact Max Box Results are shown in Figure 5.8. In general, Sobol sampling seems to lead to
an slight overestimation and Grid sampling to a slight underestimation of the solution box. In
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Figure 5.7a the best solution box visibly enters the triangular area on the top right. With more
sampling points this behaviour can be minimized (Figure 5.7b). Apparently, Exact Max Box takes
much more time to terminate for a high amount of data points, for example, approximately 17
minutes with Sobol sampling and 4.900 data points or 21 minutes with Grid sampling and 40 000
data points). Here, Grid sampling terminates faster than Sobol sampling. The algorithm did not
terminate within an hour for 10 000 and 40 000 data points with Sobol sampling, hence this data
is missing in the diagram.

Figure 5.8: Data: 2D Sum Function, Algorithm: Exact Max Box, Constraints: 0 ≤ f (x) ≤ 1.4142

Anneal Max Box Results are shown in Figure 5.9. In general, the computed solution boxes are
very good. With 625 designs the boxes are almost as large as the analytical maximum. As with
Exact Max Box, Sobol sampling leads to a slight overestimation and Grid sampling to a slight
underestimation of the solution box. There is no difference between the runtime for the two
sampling methods. Both grow linearly with the amount of sampling points and stay in the range
from 5 to 28 seconds.

Figure 5.9: Data: 2D Sum Function, Algorithm: Anneal Max Box, Constraints: 0 ≤ f (x) ≤ 1.4142

Random Max Box Results are shown in Figure 5.10. The results are moderate. Box fitness
converges around 40 and differs in each trial. As with the Anneal Max Box, there is no difference
between the runtime of the two sampling methods. Both grow linearly and stay in the range from
5 to 29 seconds.
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Figure 5.10: Data: 2D Sum Function, Algorithm: Random Max Box, Constraints: 0 ≤ f (x) ≤ 1.4142

3D Sum Function

In this section we use the three-dimensional sum function (i.e. p = 3). With Equation 5.6 the nec-

essary constraint is 3 3
√

50
100 ≈ 2.3811015779522991. In Figure 5.11 the solution space is visualized.

Runtime constraint is set to one hour. The heuristic algorithms are executed 9 times in a row to
calculate an average box fitness value.

(a) Designs created using Grid sampling. Box fitness: 47 (b) Designs created using Sobol sampling. Box fitness: 70.9

Figure 5.11: Data: 3D Sum Function, Algorithm: Exact Max Box, Constraints: 0 ≤ f (x) ≤ 2.3811, Sampling
Points: 1 000

Exact Max Box Most notably, the runtime of the problems sampled with Sobol sampling increase
with more sampling points more strongly than with Grid sampling. Like in two dimensions, the
Exact Max Box overestimates boxes if Sobol sampling is used. The difference between Grid and
Sobol sampling can be seen in Figure 5.11 with 1 000 sampling points. The largest Sobol box
protrudes more significantly into the tetrahedron in the upper right corner than the largest Grid
box. Note, that even though this is the case, the largest box still does not contain any bad design.
The usage of Grid sampling is more conservative and results in boxes which are very close to the
analytical maximum.
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Figure 5.12: Data: 3D Sum Function, Algorithm: Exact Max Box, Constraints: 0 ≤ f (x) ≤ 2.3811

Anneal Max Box gives good results. Sobol sampling approximates the analytical maximum
from above and Grid sampling from below. For Sobol sampling it starts with a box fitness of 88
and for Grid Sampling with 36. Both converge to the analytical maximum of 50. With 25 000
design points, Sobol sampling leads to a box fitness of 52 and Grid sampling has a box fitness of
48. The runtime grows linear with the amount of sampling points (range: 8 - 32 seconds).

Figure 5.13: Data: 3D Sum Function, Algorithm: Anneal Max Box, Constraints: 0 ≤ f (x) ≤ 2.3811

Random Max Box gives moderate results. Sobol sampling leads to larger boxes than Grid sam-
pling. For Sobol sampling the boxfitness starts with 50 and converges to 35. For Grid sampling
the boxfitness starts with 10 and converges to 29. The runtime grows linear with the amount of
sampling points (range: 8 - 35 seconds).

Figure 5.14: Data: 3D Sum Function, Algorithm: Random Max Box, Constraints: 0 ≤ f (x) ≤ 2.3811
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x1 Function (1D - 10D)

We define a function which we denote as x1 function:

f (x) = x1, x1 ∈ [0, 1] (5.7)

where x is a vector with arbitrary dimensionality. This function generates data for a supposedly
easy test problem to investigate the behaviour of the box maximization algorithms in higher di-
mensions. As an analytical benchmark for the box fitness, we define again 50. Since the function
only depends on the first parameter, a constraint of 0.5 ensures a box fitness of 50.
Sobol sampling allows the distribution of arbitrary amount of sampling points for each dimen-
sion. On the contrary, our implementation of Grid sampling needs to have a number of sampling
points which is divisible by the number of dimensions. Hence, Sobol sampling is used in di-
mensional experiments to enable comparability. We use an exponential scale starting with 100
sampling points and increasing with

√
10 in each step until 100 000. Hence, we get the sequence

of sampling points: [100, 316, 1000, 3162, 10 000, 31623, 100 000].
Runtime was capped at 15 minutes. If data is missing, this means that the runtime threshold was
exceeded. The heuristic algorithms were executed three times in a row to reduce variability of the
results.

Exact Max Box Results are shown in Figure 5.15. We see that a solution box is always calculated,
except for 100 000 sampling points and more than 4 dimensions where the runtime threshold was
exceeded. The runtime seems almost constant in all dimensions until 10 000 sampling points but
in reality it slightly increases with every dimension. For example with 1 000 sampling points in
one dimension the runtime is 0.034 seconds and with 10 dimensions it is 2.54 seconds. With more
sampling points the increase gets steeper.

Figure 5.15: Data: x1 Function, Algorithm: Exact Max Box, Constraints: 0 ≤ f (x) ≤ 0.5
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Anneal Max Box Results are shown in Figure 5.16. The algorithm almost always finds the an-
alytical maximum except for high dimensions with few sampling points. For example, for eight,
nine and ten dimensions the box fitness drop significantly. It seems like the algorithm is not able
to navigate out of the region of bad designs, if the dimensions are high and design points are
sparse. The runtime is moderate. Even in ten dimension with 100 000 sampling points 5 minutes
are barely exceeded.

Figure 5.16: Data: x1 Function, Algorithm: Anneal Max Box, Constraints: 0 ≤ f (x) ≤ 0.5. Note that left
plot was rotated for better visibility.

Random Max Box Results are shown in Figure 5.17. The algorithm performs very bad for all
dimensions greater than 2, independent of the amount of sampling points. This is because in
higher dimensions randomly generated boxes occupy less space. In every dimension only a part
of each dimension is used to span a solution box. Thus, with every additional dimensions the box
gets smaller and the probability that the box comprises design points decreases. The runtime is
similar to Anneal Max Box.

Sum Function (1D - 10D)

In this experiment the sum function in the range from one to ten dimensions is used. As an
analytical benchmark we chose a volume of 50 for the examples with two and three dimensions.
Hence, the shape of the bad region in two dimensions was a triangle (Figure 5.7) and in three
dimensions a tetrahedron (Figure 5.11). These geometric objects are called simplexes for arbitrary
dimensions. In Section A.3, we show that the body of the bad region is still a simplex as long as
the largest solution box (good region) has a volume of greater than 100 1

e ≈ 36.7879441171442322.
Thus, we use this value as an analytical benchmark. Since the volume of those simplexes gets
smaller with more dimensions, we wanted to choose the largest possible bad region which still is

a simplex. With Equation 5.6 we get
[

0, p p
√

1
e

]
for the constraint on the system response.

The maximum runtime was set to 15 minutes. If areas of the surface plots are missing, this means
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Figure 5.17: Data: x1 Function, Algorithm: Random Max Box, Constraints: 0 ≤ f (x) ≤ 0.5. Note that left
plot was rotated for better visibility.

that the algorithm did not terminate in time. The heuristic algorithms were executed three times
in a row to reduce variability of the results.

Exact Max Box Results are shown in Figure 5.18. The surface plot is missing some areas because
the runtime exceeds the maximum of 15 minutes. In higher dimensions the runtime significantly
drops. This seems unintuitve at first because in the prior experiments a higher amount of sam-
pling points led to an increase in runtime. The reason is that there are no or only few bad designs
if the amount of dimensions is high and the amount of sampling points is low. This is due to the
fact that the simplex of bad designs in higher dimensions almost has no volume. In Section A.3
we show that the volume of this simplex is given by 1

p! (p− f u
c )

p. In ten dimensions, for example,
the volume of the simplex is≈ 0.0000001. When 100 000 sampling points are used, the probability
to hit such a box with a point can be seen as 0.0000001× 100000 = 0.01. So it is very probable
that no bad design point exists in this case. The idea of this example applies analogously to other
combinations of dimensions and sampling points. Since the runtime of Exact Max Box algorithm
depends on the amount of bad designs, it is probable that very few or no design points in the
simplex of bad designs exist. Thus, Exact Max Box terminates fast.

Anneal Max Box Results are shown in Figure 5.19. The results are very good and almost com-
pletely resemble the results of Exact Max Box. Note, that Anneal Max Box computes boxes in
cases where Exact Max Box is not able to. The runtime increases with more sampling points and
more dimensions; getting more steeply with these two parameters.

Random Max Box Results are shown in Figure 5.20. The results are very bad. Almost indepen-
dently of the amount of sampling points, with each dimension the solution boxes get smaller. The
runtime is comparable to the runtime of Anneal Max Box algorithm.
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Figure 5.18: Data: Sum Function, Algorithm: Exact Max Box, Constraints: 0 ≤ f (x) ≤ p p
√

1
e .

Figure 5.19: Data: Sum Function, Algorithm: Anneal Max Box, Constraints: 0 ≤ f (x) ≤ p p
√

1
e
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Figure 5.20: Data: Sum Function, Algorithm: Random Max Box, Constraints: 0 ≤ f (x) ≤ p p
√

1
e . Note that

left plot was rotated for better visibility.

5.3.2 Nonlinear Problems

Experiments so far concerned linear problems. Since the prototype is applied on nonlinear prob-
lems, we run tests with data generated by nonlinear function as well and compare the results with
the previous experiments.

Simplified Rosenbrock Function (2D)

In Section 5.2 we already used the Rosenbrock function to generate a clustering problem. In this
section we use a simplified version of it to generate a problem where it is possible to calculate the
maximum box analytically.

f (x, y) = b(y− x2)2 (5.8)

Again, we set b = 100. We refer to this function as the Simplified Rosenbrock function. The
system response is constrained with 0 ≤ f (x, y) ≤ 500. It generates a two dimensional nonlinear-
problem very similar to the one in Figure 5.6. The analytical maximum is 45.5. Runtime threshold
was set to 60 minutes.

Exact Max Box Results are shown in Figure 5.21. A similar pattern as with the 2D sum function
is visible: data points with Sobol sampling seem to overestimate and Grid sampling seems to
underestimate the best possible solution box. Interestingly, the runtime is significantly higher
than in the 2D sum function example. Already with 2500 data points and Sobol sampling it took
the algorithm 24 minutes to terminate. The algorithm did not terminate within an hour for 4.900
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data points or larger with Sobol sampling, hence this data is missing in the diagram. Similarly,
the algorithm did not terminate within an hour for 40 000 data points and Grid sampling.

Figure 5.21: Data: Simplified Rosenbrock Function, Algorithm: Exact Max Box, Constraints: 0 ≤ f (x) ≤
500

Anneal Max Box Results are shown in Figure 5.22. Overall the results are good. The solution
boxes are not perfect but converge at 41 (Grid sampling) and 43 (Sobol sampling). Runtime grows
linear with sampling points and is slightly higher than in the 2D sum function experiment.

Figure 5.22: Data: Simplified Rosenbrock Function, Algorithm: Anneal Max Box, Constraints: 0 ≤ f (x) ≤
500

Random Max Box Results are shown in Figure 5.23. Overall the results are moderate. The box
fitness converges at 35. Runtime grows linear with sampling points. Interestingly, the runtime
almost is double as high as with Anneal Max Box.

Ishigami Function (3D)

A second, more difficult test case for nonlinear problems is created by using the Ishigami function
(Equation A.4)

f (x, y, z) = sin(x) + a sin2(y) + bz4 × sin(x) (5.9)

In our case, we set a = 7 and b = 0.1. The system response is contstrained by 0 ≤ f (x, y) ≤ 6.5.
The resulting problem comprises multiple local maximas. This can be seen in the solution space
in Figure 5.24. Runtime threshold was set to 60 minutes.
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n

Figure 5.23: Data: Simplified Rosenbrock Function, Algorithm: Random Max Box, Constraints: 0 ≤ f (x) ≤
500

Figure 5.24: Data: Ishigami Function, Constraints: 0 ≤ f (x) ≤ 6.5, Sampling Points: 8 000

Exact Max Box Results are shown in Figure 5.25. Most notably, the runtime of the Exact Max
Box in this case increases rapidly with the amount of sampling points. The step from 125 to 512
sampling points leads to an increase from 8 seconds to almost 24 minutes with Sobol sampling.
Even though the runtime with Grid sampling does not grows as steep, it still grows exponentially,
hitting about 24 minutes 8 000 data points. 27 000 sampling points were tested as well, but the
runtime of the algorithms exceeded the threshold. Due to the lack of an analytical benchmark,
no absolute statement about the box fitness scores can be made. The box fitness seems to be
reasonable, given the visualization and the proportions of the whole design space.

Anneal Max Box Results are shown in Figure 5.26. The results are mixed. With Sobol sampling
the boxes converge to a box fitness of 5.3. With Grid sampling the box fitness is only 1.7. In
comparison to the solution boxes of the Exact Max Box, those boxes are fine. It has to be noted that
the results fluctuate with every trial. The runtime of the algorithm grows linearly independent of
the sampling method.

Random Max Box Results are shown in Figure 5.27. Results are moderate. With Sobol sampling
the boxes converge to a box fitness of 2.6. With Grid sampling the box fitness is only 2.3. In
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comparison to Anneal Max Box, the results for Grid sampling is better. On the other hand the
result for Sobol sampling is worse. It has to be noted that the results fluctuate with every trial.
The runtime of the algorithm grows linearly independent of the sampling method.

Figure 5.25: Data: Ichigiami Function, Algorithm: Exact Max Box, Constraints: 0 ≤ f (x) ≤ 6.5

Figure 5.26: Data: Ishigami Function, Algorithm: Anneal Max Box, Constraints: 0 ≤ f (x) ≤ 6.5

Figure 5.27: Data: Ishigami Function, Algorithm: Random Max Box, Constraints: 0 ≤ f (x) ≤ 6.5

5.3.3 Runtime Difference between Grid and Sobol Sampling with Exact Max
Box

A behaviour continually observed in the evaluation is that box maximization problems sampled
with Sobol sampling took the Exact Max Box algorithm significantly longer to solve than the same
problem with Grid sampling. A hypothesis for this behaviour is the following: Exact Max Box al-
gorithm takes values of bad designs as split values to create subproblems with bounds lower and
higher than the split value. When Grid sampling is used, with every split, all bad designs which
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5.3 Box Maximization

have the same value in that dimension will not be considered anymore, because they are not con-
tained in the subproblems. That is not the case with Sobol sampling. Since points are located
more arbitrary, it is more probable that the subproblems contain only the negative split point less.
This hypothesis is supported by the following experiment. A tweaked Grid sampling was imple-
mented which lets the sampling points in the design dimensions randomly deviate a modicum
in each dimension. We refer to this sampling as Noise Grid sampling. We see in Figure 5.28 that
this significantly increases the runtime. This supports our hypothesis that the property of Grid
sampling that many points are located in a line lead to significantly reduced runtime with the
Exact Max Box algorithm. However, the runtime with Noise Grid sampling still differs to Sobol
sampling by a constant factor. This suggests a relationship between the distribution of design
points and runtime: the more evenly a non-grid sampling is distributed the higher the runtime.

Figure 5.28: Noise Grid Sampling has a significantly higher runtime than Grid sampling when the Exact
Max Box algorithm is used.

5.3.4 Summary

Different conclusions are drawn from the box maximization evaluation. First, heuristic algorithms
have their justification because the runtime of Exact Max Box grows rapidly with respect to di-
mensions and amount of bad designs. The use of Sobol sampling always leads to larger solution
boxes than the use of Grid sampling. In cases where the analytical benchmark was available,
those Sobol boxes were larger then the largest analytically possible box. Grid sampling on the
other hand seemed to approach the maximum from below. With a more difficult problem created
using the Ishigami function this distinction seems not to hold anymore.
With regard to the algorithms, Anneal Max Box performed significantly better than Random Max
Box (baseline) in our linear test problems from one to ten dimensions. Also, it performs better
for nonlinear problems with only one global maximum (Simplified Rosenbrock Function). In the
case of difficult nonlinear problems with multiple local maximas (Section 5.3.2) Anneal Max Box
performs better than Random Max Box when Sobol sampling is used. In this case, if Grid Sam-
pling is used, it is the other way round. Practically, Random Max Box is not usable in problems
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with more then three design parameter dimensions.
In general, there is no rule on how to choose the amount of sampling points. It depends heavily
on the box maximization problem which is to be solved. Naturally, the more sampling points are
available, the more accurately the largest solution box can be approximated. Even though more
sampling points lead to more accurate representation of the underlying function, more designs
also mean signficant increases in runtime in all tested algorithms. With easy linear test problems
we saw the box fitness converges with 900 points in two dimensions and 25 000 in three dimen-
sions. For more complex problems, those numbers need to be higher. 50 000 desisgns seem to be
already to few designs for more than five dimensions.
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6 END-TO-END EVALUATION

In the end-to-end evaluation we use two real datasets to test the software prototype: the SCALE
dataset and the US-NCAP dataset. In this chapter the whole pipeline (Figure 2.7) is tested.

6.1 SCALE DATASET

The SCALE dataset is a normalized and anonymized dataset of real crash tests. It consists of 63
samples with twelve design parameters and two system responses. All columns are normalized
to the interval [0, 1]. Since the system response Y varies between 0 and 1, we set 0 ≤ Y ≤ 0.5
as the constraint on Y. In this test the second system response Y2 is left out. Further information
about the SCALE dataset can be found in the appendix (Subsection A.1.1).

A dataset with two design parameter dimensions allows for the creation of plots to visualize the
results. For reasons of comprehensibilty, we create such a dataset with two design parameters (C,
I) and a system response (Y). We chose C and I because in previous investigations we saw that the
dataset is very sensitive to those two design parameters. We refer to this subset of the full dataset
as 2D Scale. Nevertheless, the test is also conducted with the complete dataset, i.e. twelve design
parameters and system response Y. We refer to this dataset as 12D Scale.

6.1.1 Outlier Detection and Model Quality

For each dataset a polynomial regression model is created. The models were created with one,
two and three degrees. The prototype automatically chooses the model with the best R2 score
on the test set. As stated in Section 5.1, the SCALE dataset contains one known outlier. The table
below compares the R2 scores for the polynomial regression models created with and without this
outlier. Model generation was repeated with different test and training sets until the third digit
after the decimal point converged. Values were rounded to two digits after the decimal point.
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Outlier No Outlier
Dataset R2 Test R2 Training R2 Test R2 Training
2D Scale 0.46 0.64 0.58 0.73

12D Scale 0.57 0.79 0.59 0.85

In the case of two design parameters we see an increase of 0.12 on the predictive power on the
test set. On the training set the R2 score increases by 0.09. In the case of 12 design parameters, the
increase in predictive power is smaller but still significant both on the test set (0.02) and training
set (0.06).
We found that the 12D Scale model created with the augmented dataset was essentially an useless
model even though the R2 scores look good. The predicitions were very bad and either large
negative or positive numbers; not as expected in the range from 0 to 1. At the time of writing
we could not explain the reason for this behaviour. To circumvent the problem a neural network
model with Tensorflow was created instead and used in the following experiments.
In our tests it came to know that model generation with Tensorflow took significantly longer than
with polynomial regression. In the case of 12D Scale it took polynomial regression 0.45 seconds
to finish with three trials (degrees one, two, three). To train a neural network with random search
and three trials (two times 300 epochs and one time 100 epochs) took about 38 seconds. Per trial
polynomial regression took only 0.15 seconds to finish while Tensorflow needed 12.94 seconds.

6.1.2 Data Augmentation

In Figure 6.1a the original design space for the 2D SCALE dataset is visualized. In Figure 6.1b
the design space is augmented by 400 additional designs using the polynomial regression model
created in the previous step. Likewise, data augmentation was performed on the 12D SCALE
dataset.

(a) Original data. (b) Data augmented by 400 Sobol sampled design points.

Figure 6.1: Two dimensional subset of the SCALE dataset. Constraint: 0 ≤ Y ≤ 0.5
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6.1 SCALE dataset

6.1.3 Clustering

In the 2D SCALE dataset clusters are found properly, both in the case of real data (Figure 6.2a)
and with 400 additional designs (Figure 6.2b). In the case of 12D SCALE dataset without data
augmentation, a small cluster with a volume of 0 is found. This is because 63 designs for a 12
dimensional design space is a really sparse design space. As this cluster is too small for additional
tests, we only consider the augmented 12D SCALE dataset in the following box maximization
step.

(a) Original Data. (b) Augmented Data.

Figure 6.2: One cluster is found on the 2D SCALE dataset both with and without data augmentation.

6.1.4 Box Maximization

Due to the variance of the heuristic box maximization algorithms, Anneal Max Box and Random
Max Box are exectued five times in a row for each test case. We average the results to get a more
robust box fitness. Nonetheless, we show the highest and lowest value of the results so that one
can get a sense of how this value can vary.

2D Scale

With two design parameters Exact Max Box can be used to calculate solution boxes. The results
on the original data are shown in Figure 6.3a. Likewise, the results on the augmented data are
shown in Figure 6.3b. The results of the box maximization algorithms can be found in the table
below.
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Real Data Augmented Data
# Algorithm Lowest Highest ∅ Lowest Highest ∅

Exact Max Box 36.9 36.9 36.9 33.5 33.5 33.5
Anneal Max Box 34.3 36.9 36.4 26.7 30 28.7

Random Max Box 17.1 25.6 19.7 22.7 30 26.3

The largest possible solution boxes for the augmented design space is smaller than the box fitness
for the original design space. Interestingly, Anneal Max Box often calculates the maximum box
in the original design space. Naturally, Exact Max Box performs slightly better than Anneal Max
Box. Random Max Box finds solution boxes which are on average smaller than the boxes Anneal
Max Box finds.

(a) Original Data. (b) Augmented Data.

Figure 6.3: One cluster is found on the 2D SCALE dataset both with and without data augmentation.

12D Scale

The results of the box maximization algorithm on the 12D SCALE dataset can be found in the
table below.

Augmented Data
# Algorithm Lowest Highest ∅

Exact Max Box n/a n/a n/a
Anneal Max Box 22 36 28.7

Random Max Box 0 0 0

In twelve dimensions Exact Max Box can not calculate a solution box in reasonable time. Anneal
Max Box calculates solution boxes which on average fill 28.7% of the design space. However,
Random Max Box solution boxes have a volume of 0. This means that in at least one dimension
an interval only consisted out of one value.
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6.2 US-NCAP Dataset

6.2 US-NCAP DATASET

The US-NCAP dateset contains data about a front crash of the NCAP Ford Taurus model [26]. It
consists of 27 design parameters and twelve system responses. Further information can be found
in the appendix (Subsection A.1.2).

Two additional subsets of the US-NCAP dataset are used. One of those subsets should consist
of three design parameters to be able to plot the results. The other subset should comprise ten
design parameters. Again, we refer to the datasets as 3D US-NCAP, 10D US-NCAP and 27D US-
NCAP. The design parameters for the datasets are choosen on the basis of the sensitivity analysis
which was conducted on the US-NCAP dataset by Reuter et al. [26]. The analysis was conducted
on the system response max_ intrusion_ firewall_ left. Therefore, max_ intrusion_ firewall_ left is
used as a system response and the other system response are left out in this test. The values for
this response vary between 25.14 and 343.02. We set 0 ≤ max_intrusion_ f irewall_le f t ≤ 200
as a constraint. For the dataset 3D US-NCAP mat_ rO, mat_ rI and rail_ I are choosen as design
parameters. For the test with 10D US-NCAP additionally rail_ O, mreinf, subfr, subfr_ l, arm_ top,
arm_ bot and tie_ bar are used. These design parameters are choosen because they show a bigger
effect on max_ intrusion_ firewall_ left over all used sensitivity analysis methods in comparison to
other design parameters.

6.2.1 Outlier Detection and Model Quality

Polynomial regression was used to create models. Again, one, two and three degrees is used and
the best model is choosen. As we saw in Section 5.1 there are 118 known outliers in the dataset
which can be found by outlier detection. The R2 scores both on the test and training set can be
found in the table below. Model generation was repeated with different training and test sets and
averaged until the third digit after the decimal point converged. Values were rounded to two
digits after the decimal point.

Outlier No Outlier
# Design Parameters R2 Test R2 Training R2 Test R2 Training

3D US-NCAP 0.00 0.00 0.41 0.44
10D US-NCAP -0.01 0.00 0.53 0.56
27D US-NCAP 0.02 0.05 0.72 0.80

The resulting R2-Scores between the models generated with and without outliers differ signifi-
cantly. Models generated with outliers have a R2 scores of almost 0. Those models effectively
have no predictive power. On the other hand, if outliers are removed, the resulting models are
reasonable. The more design parameter dimensions are available (and with that: the more infor-
mation), the better the resulting models.
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6.2.2 Data Augmentation

In Figure 6.4a we see that the US-NCAP dataset shows visible gaps between designs. This un-
derlines the importance of data augmentation. Therefore, in this part we focus on augmented
data instead of only real data. In Figure 6.4b the dataset with data augmentation is shown. Sobol
sampling was used to create 1 000 additional design points.

(a) Original Data. (b) Original data augmented by 1 000 design points.

Figure 6.4: 3D SCALE dataset with and without data augmentation.
Constraint: 0 ≤ max_intrusion_ f irewall_le f t ≤ 200

6.2.3 Clustering

In the subset with three design parameters five clusters are found. Because two of those clusters
contain only two designs, we want to leave them out. We filter out all clusters with less than
six data points. The remaining three clusters are visualized in Figure 6.5a. In 10D US-NCAP
dataset one big cluster is found. In the full dataset 60 clusters are found. Again, only one cluster
is reasonably large. The other 59 clusters contain mostly only two to five design points. They
are filtered out. In the next step we use the large cluster for the box maximization of the 27D
US-NCAP dataset.

6.2.4 Box Maximization

3D US-NCAP

Again, because of the variance, Anneal Max Box and Random Max Box are exectued five times
in a row for each test case. Results are averaged to get a more robust box fitness. Nonetheless,
the highest and lowest value of the results are shown so that one can get a sense of the variance.
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(a) Three visible clusters are found. (b) Solution boxes calculated by Anneal Max Box.

Figure 6.5: 3D SCALE dataset augmented with 1 000 design points.
Constraint: 0 ≤ max_intrusion_ f irewall_le f t ≤ 200

Solution boxes calculated by Anneal Max Box are visualized in Figure 6.5b. In the table below
box fitnesses of the solution boxes for the three algorithms is shown.

Augmented Data
# Algorithm Lowest Highest ∅

Exact Max Box n/a n/a n/a
Anneal Max Box 6.5 10.36 8.42

Random Max Box 1.46 2.55 2.23

Exact Max Box could not provide a solution box in reasonable time. In a time frame of 12 hours it
did not terminate. Anneal Max Box gave good results. Random Max Box gave moderate results.
In summary, Anneal Max Box performed best.

10D US-NCAP

Again, Exact Max Box could not provide a solution in a reasonable amount of time. Anneal Max
Box calculated better solution boxes than Random Max Box on average. However, the variance
of the box fitness seems to increase with more design parameter dimensions.

Augmented Data
# Algorithm Lowest Highest ∅

Exact Max Box n/a n/a n/a
Anneal Max Box 0.77 4.24 2.28

Random Max Box 0 2.57 0.54
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27D US-NCAP

When all design parameters are used, Exact Max Box can not provide a solution. Anneal Max Box
provides solution boxes which vary significantly in each trial. Random Max Box only generates
useless boxes: a box fitness of −∞ signifies that the provided boxes do not contain any design
point. Not in a single trial Random Max Box found a box better than −∞.

Augmented Data
# Algorithm Lowest Highest ∅

Exact Max Box n/a n/a n/a
Anneal Max Box 1.42× 10−5 32570.92× 10−5 10766.9× 10−5

Random Max Box −∞ −∞ −∞

6.3 SUMMARY

The end-to-end evaluation yields many insights. We see that outlier removal can significantly
improve the predictive power of models. The generation of models with polynomial regression
is significantly faster than with Tensorflow. At the same time the resulting models are similar in
terms of their R2 score on test and training set. However, a model with a high R2 score can still be
a bad model. As we saw in the case of 12D SCALE dataset the polynomial regression model had
a high R2 score both on training and test set. Still, the predictions of the model were very bad. In
those cases neural network models should be used instead.
Clustering works independent of the number of design parameters. However, no general state-
ment about the clustering quality can be made due to the lack of a benchmark. The clusters made
sense visually in two and three dimensions. Sometimes a large amount of tiny clusters are found.
They can be removed by filtering.
Practically, Exact Max Box can not be used on Sobol sampled augmented datasets with more than
two dimensions. Anneal Max Box is usable in high dimensions, but the box fitness of the solutions
have a high variance. Due to the lack of a benchmark, no definite statement about the quality of
the solution boxes can be made. Random Max Box has the tendency to produces bad solution
boxes in high dimensions. This is consistent with the results in Section 5.3.1 where we saw that
solution boxes get smaller with higher dimensions when Random Max Box is used. This trend
continues with dimensions greater than ten. In 27 dimensions the box fitness hits−∞. Practically,
Random Max Box should not be used on datasets with more than three desgin dimensions.
An important observation is that even though the solution boxes seem small because the volume
is small, the permissible intervals can still be large.
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It can be summarized that the software prototype is able to determine permissible intervals for ar-
bitrary dimensions. On easy test problems in arbitrary dimensions the Anneal Max Box algorithm
finds good solution boxes. In certain low-dimensional cases even the Exact Max Box algorithm is
applicable. Furthermore, in higher dimensions Anneal Max Box is able to provide solution boxes,
even though the solutions vary significantly between trials. The methods for outlier detection
showed that they can contribute in significantly improving model quality. In the tested cases
the clustering algorithm finds clusters and provides multiple solutions boxes for the engineer.
Visualizations of the dataset in different steps of the pipeline help to interpret the results, make
problems comprehensible and support in interpreting the dataset.
However, the approach of the prototype still has its limitations. The approach in this thesis as-
sumes to create fixed amount of design points for a problem before a box maximization process
is started. This sampling process tries to approximate the underlying function of the dataset. In
high dimensions a substantial amount of sampling points is needed to approximate that function.
Unfortunately, more sampling points mean also a significantly higher runtime for the algorithms.
Even worse, in some cases the amount of sampling points needed are too high to calculate a
solution with the heuristic algorithms. For example, if we assume that 50 sampling points per di-
mension are needed to approximate a highly nonlinear problem, in six dimensions already more
than 15 billion sampling points are needed. The problem can also be visualized from another
perspective: if an engineer expects all of his permissible intervals to comprise 30 % of each design
parameter range in a ten dimensional design space, this leads to a volume of 0.310 = 0.000005905.
If the design space is sampled evenly, the probabilty to hit this volume with a sampling point can
be seen as 0.000005905. The amount of needed sampling points necessary to sample this space is
at least 1

0.000005905 ≈ 169348. Thus, about 170 000 sampling points are needed so that it is probable
that just one point is located in the permissible space. At least two points are needed to span a
solution box and two points have a very low probability to be able to span the largest box so that
the full 30 % intervals in each dimension can be found. Thus, even more than 340 000 points in
this setup can not guarentee be sufficient to find the desired solution box.
This problem can be described as a resolution problem in high dimensions. It partially stems from
the fact that our approach is conservative which means that solution boxes need to have sup-
porting designs on their border. This problem would not emerge if the algorithms would allow
protruding edges in empty spaces to be considered as permissible. However, if the algorithm
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would not be conservative, engineers can not have that much confidence in the resulting solution
boxes.
The resolution problem is a typical problem arising from high dimensions. The well-known phe-
nomena that certain problems emerge from high dimensions is called the curse of dimensionality.
Therefore, there is great interest in reducing the amount of dimensions without impairing the
modeled system. One approach is sensitivity analysis which aims to determine the most signifi-
cant variables of a function. Implementing sensitivity analysis in the prototype could improve the
results if the amount of dimensions of some design parameters turn out not to contribute much or
anything to the system response. This is why sensitivity analysis is proposed as useful extension
to the existing prototype.
In general, engineers can only have confidence in the provided permissible intervals insofar as the
generated model of the dataset is of good quality. Thus, it is of utmost importance that the gen-
erated models have high R2 scores or low least-squares errors, respectively. A problem is that the
generated model heavily depends on the provided dataset. If there are not enough data points,
it could be helpful to indicate to the engineer that he is about to generate a model which can
not have a good prediction quality. If he still uses a bad model for determination of permissible
intervals, the prototype should warn the user that those intervals should be used with caution.
With respect to the user experience, the prototype would benefit from hints guiding the engineer
in the process of outlier detection, model generation, design space sampling, clustering and box
maximization.
Furthermore, the Anneal Max Box algorithm has potential for improvement. In high dimensions
and with difficult low-dimensional problems, solution boxes have a high variance. From this it
can be concluded that the algorithm is not deterministic in those cases. To make it deterministic
either the amount of trials can be increased or the algorithm in itself has to be revised with trial
and error on relevant test problems. Furthermore, there exists the possibility to implement heuris-
tic algorithm with a different metaheuristic such as an evolutionary / genetic programming. The
exact procedure may depend on the practical problems and the specific application of the soft-
ware prototype.
In terms of sampling, we saw that Grid sampling in general is not applicable because no arbitrary
amounts of sampling points can be generated. On the other hand, Random sampling leads to
bad distribution of sampling points. This is why Sobol sampling is the favoured approach for
sampling. We see no reason why a different sampling method should improve the results. An
idea worth investigating instead would be an adaptive / intelligent sampling of the design space.
Since often the design space is more filled in certain areas than in others, some areas need more
sampling than others. Runtime could be saved, if those sampling points were only created in the
sparse areas of the design space.
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8 CONCLUSION

In this thesis, the engineers’ problem of optimizing designs while still satisfying overall design
goals was presented. This problem leads to a need to support engineers in the design process
by determining permissible intervals of design parameters where the system response fulfills a
predefined constraint. It was shown that permissible intervals need to be independent of each
other to be easily usable by the engineer. On the basis of the work of Zimmermann et al., we
showed that this problem is an optimization problem where the largest multidimensional box in
solution space has to be calculated. The aim of this thesis was to develope a software solution to
determine those independent permissible intervals.
In the beginning and on the basis of related work a concept for the prototype was created. The
concept comprises a step for data preprocessing and the subsequent determining of permissible
intervals. Data preprocessing contains the removal of outliers via outlier detection methods and
data augmentation which itself consists out of model generation and design space sampling. On
the preprocessed data permissible intervals are determined by a clustering step and a box max-
imization step. The concept served as a basis to find and implement methods to solve the prob-
lems of each step of the pipeline. For outlier detection proximity-based methods such as k nearest
neighbour and DBSCAN were presented and implemented. As an example for high-dimensional
outlier detection, isolation forest was explained and integrated. For data augmentation the topics
model generation and sampling methods were investigated. On that basis two model generation
methods were implemented: polynomial regression and artificial neural networks. For sampling
methods, Grid sampling and Sobol sampling are used. For clustering the algorithm DBSCAN was
reused. As a solution for the box maximization algorithms an exact algorithm by Eckstein et al.
was presented and implemented. Exact Max Box always provides a best solution to the box max-
imization problem. Because Eckstein et al. showed that their algorithm is NP-hard, the topic of
metaheuristics was explored and the Anneal Max Box algorithm, which is inspired by simulated
annealing, was implemented. As a naive baseline solution Random Max Box algorithm was im-
plemented. All important steps of the workflow were augmented by meaningful visualizations.
In a component-wise evaluation outlier detection methods, clustering and box maximization
steps were evaluated. Anneal Max Box algorithm determined good solution boxes for easy test
problems in arbitrary dimensions. For more difficult test problems with multiple local maximas
the algorithm provided solutions which varied between trials. In an end-to-end evaluation the
prototype was tested completely on two real datasets - the SCALE dataset and the US-NCAP
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dataset. The evaluation showed that in general the approach works for arbitrary dimensions if
Anneal Max Box is used. However, we saw that solutions of Anneal Max Box vary more signifi-
cantly between trials in higher dimensions. In general, it came to know that the approach suffers
from the curse of dimensionality. We showed that the approach has a resolution problem which
means that in higher dimensions, depending on the problem, too many design points are needed.
To overcome this, a sensitivity analysis was proposed to reduce the amount of irrelevant dimen-
sions. Further future work is the implementation of an intelligent / adaptive sampling as well
as the improvement of Anneal Max Box. Furthermore, a new algorithm could be implemented
leveraging other metaheurtics such as genetic or evolutionary programming.
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A APPENDIX

A.1 REAL DATASETS

Real datasets are datasets which were either generated by real world measurements or CAE sim-
ulations.

A.1.1 SCALE Dataset

The SCALE dataset is a normalized dataset of real crash tests. Due to the nature of real experi-
ments, the data in this dataset is noisy. It consists of 63 samples with fourteen parameters each.
Twelve parameters are available for design and two parameters are system responses. It contains
one known outlier. A scatterplot matrix of the dataset can be found in Figure A.1.

A.1.2 US-NCAP Dataset

The US-NCAP dateset is data about a front crash of the NCAP Ford Taurus model [26]. It consists
of 2972 samples with 39 parameters each. 27 parameters are available for design and twelve
parameters are system responses. It contains 118 known outliers. The known outliers all have
values of 2× 1030 on the system response parameters. At the end of writing this thesis, it came to
know that those values are the typical output values of the simulation program LS-DYNA in the
case that certain calculations failed.

A.2 SYNTHETIC DATA

In the thesis, data is generated on-the-fly using functions for evaluation purposes. In this section
we describe all functions used for test data generation, as well as datasets which were generated.
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Figure A.1: Scatterplot matrix of the SCALE dataset.

Figure A.2: Ford Taurus model front crash test, 56.6 km/h [26].
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A.2 Synthetic Data

Figure A.3: US-NCAP dataset contains 27 design parameters and twelve system response variables [26]
.

A.2.1 Functions for Data Generation

This section summarizes all functions used for data generation. To generate data, the design space
is filled with data points. In this thesis two sampling methods are being used:

• Sobol sampling

• Grid sampling

Also, the number of data points is variable and depends on the usage context. Those two param-
eters for data generation are mentioned if necessary.

Identity Function

The identity function maps a value or vector to itself.

Id(x) = x (A.1)

Rosenbrock Function

The Rosenbrock function is non-convex function used as a performance test problem for algo-
rithms in optimization. [27]. The function is given by:

f (x, y) = (a− x)2 + b(y− x2)2, x, y ∈ [−1, 3] (A.2)

In our case, we set a = 1 and b = 100.

Simplified Rosenbrock Function

From the Rosenbrock function we derive a simplified function which we refer to as Simplified
Rosenbrock Function.
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f (x, y) = b(y− x2)2, x, y ∈ [−1, 3] (A.3)

In our case, we set b = 100.

Ishigami Function

f (x, y, z) = sin(x) + a sin2(y) + bz4 × sin(x), x, y, z ∈ [−π, π] (A.4)

In our case, we set a = 7 and b = 0.1.

Sum Function

We define a sum function:

f (x) =
p

∑
i=1

xi, xi ∈ [0, 1], p ∈N 6=0 (A.5)

with n being the number of dimensions of the vector x.

A.2.2 Generated Datasets

Identity Dataset

The identity dataset was generated using identity function (A.2.1). The Identity dataset has 200
samples and two columns. The first column contains data points created with Sobol sampling in
the range [0, 10]. Values in the second column are given by the identity function, thus it contains
same values as in the first column. Manually, 9 outliers were created in the dataset. The outlier
values of Id(x) deviate in different magnitudes.

A.3 PROOFS

In this section we prove four statements made in the context of the box maximization test problem
generated with the sum function (Section A.2.1). Recall that the sum function is defined on the
p-dimensional unit cube with xi ∈ [0, 1]. By Bmax we denote the largest box fitting inside the space
of good designs defined by the relation ∑i xi ≤ f u

c ∈ [0, p]:

1. The box Bmax is a cube.

2. Prescribing the box fitness of Bmax to a value µ is equivalent to requiring f u
c = p p

√
µ

100 .

3. If Vol(Bmax) ≥ Vmin = 1
e , the set of bad designs R = {x|∑p

i=1 xi > f u
c } is a simplex.

4. If R is a simplex, we have Vol(R) = 1
p! (p− f u

c )
p.
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A.3 Proofs

Here e ≈ 2.71 denotes Euler’s number.

Proof of 1: Let Vol(B) a volume of an arbitrary box B. Then Vol(B) = L1 × . . . × Lp where
L1, . . . , Lp are the length of the edges of B. With the well-known inequality of arithmetic and geometric
means we get

L1 × . . .× Lp ≤
(

L1 + . . . + Lp

p

)p

The equality only holds if L1 = . . . = Lp which is equivalent of the box being a cube. �

Proof of 2: With the considerations of Proof 1 and because L1 + . . . + Lp = f u
c , we get

Vol(B) =
(

f u
c
p

)p

Thus, for a given volume Vol(B) and µ = 100Vol(B) for a box with only good designs

f u
c = p p

√
Vol(B) = p p

√
µ

100
(A.6)

�

Proof of 3: We are looking for a value Vmin for which Vol(Bmax) ≥ Vmin implies that R is a
simplex. In two dimensions R is a simplex (triangle) if f u

c ≥ 1. In three dimensions it is a simplex
(tetrahedron) if f u

c ≥ 2. In general, this is the case if and only if f u
c ≥ p − 1. Thus, Vsimplex =

( p−1
p )p = (1− 1

p )
p. With the well-known fact that lim

x→∞
((1− 1

p )
p) converges to 1

e from below, we
get the desired assertion. �

Proof of 4: Vol(R) = Vol({x|∑p
i=1 xi > f u

c }) = Vol({x|∑p
i=1 xi ≤ p− f u

c }). With the formula
for the volume of a standard simplex Vol({x|∑p

i=1 xi ≤ p}) = 1
p! and that the volume of a body

in a p-dimensional space gets scaled by a scale factor s with sp, we get: Vol(R) = 1
p! (p− f u

c )
p. �
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