
Detecting FEM geometry using
Machine Learning
Master Thesis Defense, Nick Scheider, 26.03.2020



2

Motivation

Supporting engineers in the CAE development 

process

Design decisions based on historical data

CAD

Creation of parts

Generate areas

Pre-processing

Defining the model

Discretization

Environmental 

factors

Solver

Solving equation 

system (simulation)

Post-processing

Visualization

Analysis

Machine 

learning 

algorithms
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Use cases

Use Case
 Automatic labeling system
 Automatic sorting of part lists
 Recommendation system for spot weld 

parameter
 Recommendation system of better part 

constructions
 Segmentation of part groups

rocker_panel_left
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Tasks

Research on approaches in the field of 3D geometric 

data classification

Conception of a FEM data pre-processing pipeline

Evaluation of the approaches based on the extracted 

data

Prototypical implementation of a use case

Classification

algorithm
Label



FEM data structure
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FEM data structure

Two types used: 
 LS-Dyna
 PAM-Crash 

Consists of keywords and data blocks 

 database structure

Geometric data under the keyword 

*NODE

[1]
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FEM data structure

Goal
 Extract 3D geometric data for every 

part (point cloud)

 Extract all nodes from all elements

of a part

Collect data from more than one car

[1]



Data pre-processing
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Data selection

A lot of FEM files extracted from LoCo
 Few differences between files of the 

same car

Take only one FEM file per car model

 Six different car models
• Five Audi models and one Toyota Yaris
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Parsing

Extract 3D data of parts of a car model

Challenges
 Models contain only a subset of the 

same parts
 No uniform naming of car parts 
 Small amount of car models / samples
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Challenges

Challenges
 Models contain only a subset of the 

same parts

 No uniform naming of car parts 

 Small amount of car models / samples

Extract only a subset of parts
 Human extracted subset
 Human labeled car parts

 bpillar_inner_left
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Sampling

Challenges:
 Car parts consists of a different number 

of points
 Small amount of car models / samples

Uniform sampling of the part surface 
 Using barycentric coordinates
 Latin Hypercube Sampling

 Point clouds with fixed point number

 Generate more than one sample per part
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Normalization

Normalize point clouds
 Smaller values  faster processing
 Standard for 3D geometric data

Usage of mean normalization
 Calculate centroid of point cloud
 Substract centroid  move pc to origin
 Calculate max distance / divide by max 

distance
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Pre-processing pipeline

Extraction step
 Parse every FEM model 
 Extract subset of car parts and safe as 

JSON file

Generation step
 Sample and normalize every part in folder 
 Mapping of part and corresponding class
 Safe as HDF5 dataset

Extracting

FEM-Data

Uniform 

Labels

Subset of parts

JSON

Generating

Sampling / 

Normalization

Class

Mapping

HDF5 datasets
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Datasets

6 HDF5 datasets one per model

More than one sample per part

5 datasets used as trainings data
 10240 samples

Audi FM3 used as test dataset
 1024 samples (10 %)

Number of classes depends on labeling

dataset number of

parts

Number of

classes

number of

samples

Audi FM1 31 (15, 16, 13) 2.048

Audi FM2 31 (15, 16, 13) 2.048

Audi FM3 35 (15, 16, 13) 1.024

Audi FM4 33 (15, 16, 13) 2.048

Audi FM5 23 (15, 16, 13) 2.048

Toyota

Yaris

29 (15, 16, 13) 2.048



Deep learning architectures
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PointNet

DL architecture for point cloud classification and segmentation
 Charles R. Qi et al. 2016
 Input: point cloud as nx3 array (n point with x, y, z coordinates)
 Output: k class scores
 Invariant to point order
 Invariant to rotation and translation

3.5M parameters

Linear complexity to

number of input points

[2]
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3D modified Fisher Vectors

DL architecture with new point cloud 

representation
 Itzik Ben-Shabat 2018
 Based on GMM and Fisher Vectors

Gaussian Mixture Model
 Probability distribution of several 

Gaussians

Fisher Vector
 Describe points by deviation from GMM

[3]
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3D modified Fisher Vectors

Fisher Vector components
 Normalized gradients w.r.t. Gaussian 

parameters

[4]
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3D modified Fisher Vectors

Use GMM on a grid with fixed means and 

weights
 Representation of [-1, 1] unit sphere

Fisher Vector for every Gaussian
 Fisher Matrix

 New form to represent 3D point clouds
[5]
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3DmFV architecture 

DL architecture with 3D CNN
 Input: nx3 point cloud (transformed into 3DmFV representation)
 Output: k class scores
 Invariant to point order 
 Invariant to rotation and translation

Usage of inception networks
 CNN architecture with 

different filter size

4.6M parameters

[6]



Evaluation
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PointNet vs. 3DmFV 

Setup
 Hyperparamter nearly identical
 Trained on the same computer for 

100 epochs
 After 1 epoch

 Test with Audi FM3 dataset

Three different Benchmarks
 Coarse part groups
 Distinction between left and right parts
 Distinction between inner and outer 

parts
 To analyze the limits of the approaches

PointNet 3DmFV

Batch size 32 64

Point cloud size 1.024 1.024

Optimizer ADAM ADAM

Number of

epochs

100 100

Number of

gaussians

- 125
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Benchmarks - Coarse part groups

Inner/outer and left/right parts share the 

same class
 A_pillar and b_pillar
 Overall 15 different classes

Results
 Trainings accuracy:

 PointNet – 99.5%
 3DmFV – 99.7%

 Test accuracy:
 PointNet – 71.6%
 3DmFV – 98.8%

 Runtime: 
 PointNet – 16h
 3DmFV – 38h
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Benchmarks - Summary

Summary
 Trainings accuracy ~99%
 3DmFV test accuracy always better 

than PointNet

 focus on 3DmFV Metric Approach Part 

groups

Distinction

left/right

Distinction

inner/outer

Classes 15 16 13

Accuracy 

(Training)

PointNet 99.5% 99.6% 99.8%

3DmFV 99.7% 99.8% 99.7%

Accuracy

(Test)

PointNet 71.6% 68.8% 83.2%

3DmFV 98.8% 81.0% 85.6%
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Benchmarks - distinction left/right 

Analyze the challenging parts
 Rocker panel seems challenging
 Confusion between left and right part

 geometric nearly identical
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3DmFV - Gaussians

Change number of Gaussians
 Finer grid resolution
 More features 

 better accuracy?
 Distinction between left/right parts

Results
 Slightly better results with finer grid
 Increase in runtime

 Tradeoff between
accuracy / runtime

Metric 3x3x3 5x5x5 8x8x8

Accuracy (Training) 98.5% 99.8% 99.9%

Accuracy (Test) 78.0% 81.0% 85.0%

Runtime (Test) 43s 116s 373s

3x3x3 5x5x5

8x8x8
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Benchmarks

Conclusion
 3DmFV better performance on tested 

dataset
 All benchmarks show good results

 Coarse part groups best one
 Geometric nearly identical parts are 

challenging
 Tradeoff Accuracy / Runtime



Implementation / Demo
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Implementation

Prototype in FreeCAD
 Integrate a trained neural network in a 

CAD software
 Application for visualizing a Use case

 Automatic labeling system
 First: Classification of point cloud 

 Classify a part from a STEP file
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Implementation

Classification pipeline
 Convert STEP into mesh
 Sample mesh with 1024 points
 Normalize points cloud
 Classify point cloud

 Returns the label of the part and

changes the part name

STEP 

file

STL 

mesh

Point 

cloud

Part 

class

B-Pillar

Meshing

S
a
m

p
lin

g

Classification
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Contribution

Conclusion
 Classification of car parts works!
 3DmFV shows good results 
 Similar parts are more challenging

 Realization of Use cases are possible!

Outlook
 Training with more parts / models
 Investigate performance of 

segmentation networks
 Prototype of specific use cases



Thank You! 
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Discussion
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Implementation

Realization of other Use cases
• Collect historical part data in a 

database
• Use classification network
• Query database with part label

 return (aggregated) part information

 Concept of a recommendation system  

Part

Punkt-

wolke
Part

class

B-Pillar
C

o
n
v
e
rtin

g

Classification

Database

Q
u
e
ry

Part

information
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Benchmarks – distinction inner/outer

• Distinction between inner / outer parts
• A_pillar_inner and a_pillar_outer
• Overall 13 different classes

Results:
• Trainings accuracy:

• PointNet – 99.8%
• 3DmFV – 99.7%

• Test accuracy:
• PointNet – 83.2%
• 3DmFV – 85.6%

• Runtime: 
• PointNet – 18h
• 3DmFV – 38h
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Benchmarks - Coarse part groups

Analyze the challenging parts
 Compare confusion matrix

 shows the results per class
 Calculate F1 score

Results
 Weighted F1:

 PointNet – 0.58
 3DmFV – 0.96

 3DmFV better results than PointNet
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Benchmarks – distinction left/right 

Distinction between left / right parts
 A_pillar_left and a_pillar_right
 Only parts with a counter part
 Overall 16 different classes

Results:
 Trainings accuracy:

 PointNet – 99.6%
 3DmFV – 99.8%

 Test accuracy:
 PointNet – 68.8%
 3DmFV – 81.0%

 Runtime: 
 PointNet – 18.5h
 3DmFV – 39h
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3DmFV – Different test sets 

Test the approach with different test sets
 Only trained on Audi models
 Test with Toyota Yaris dataset
 Classification of coarse part groups

Results
 3DmFV bad performance 
 Test Accuracy: ~38%
 Lots of confusions between classes

Test with Audi FM2
 Same results as before 
 Test Accuracy: ~99%
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3DmFV – Different test sets 

Limits of 3DmFV
 Comparison of Fisher matrix between 

B-pillar and a-pillar-lower
 Very similar representation

 Yaris A-pillar looks more like 
Audi B-pillar

Conclusion
 3DmFV better performance on tested 

dataset
 All benchmarks show good results

 Coarse part groups best one
 Geometric nearly identical parts are 

challenging
 3DmFV shows better results on a 

specific domain – only Audi data

FM2 b-pillar

Yaris b-pillar

FM3 b-pillar

FM2 a-pillar-lower

FM3 a-pillar-lower

Yaris a-pillar-lower



41

Label Map / Class Map
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Sampling
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Fisher Vector 

[6]
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Fisher Vector 

A-pillar B-pillar
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Fisher Vector 

Bottom Wheel house
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Fisher Vector 

middletunnel firewall
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Parts



48

Sources

[1] http://www.itzikbs.com/what-is-3d-modified-fisher-vector-3dmfv-representation-for-3d-point-clouds

[2] https://arxiv.org/pdf/1612.00593.pdf

[3] http://www.itzikbs.com/gaussian-mixture-model-gmm-3d-point-cloud-classification-primer

[4] http://www.itzikbs.com/fisher-vector-for-3d-point-clouds-classification-primer

[5] http://www.itzikbs.com/what-is-3d-modified-fisher-vector-3dmfv-representation-for-3d-point-clouds

[6] https://arxiv.org/pdf/1711.08241.pdf

http://www.itzikbs.com/what-is-3d-modified-fisher-vector-3dmfv-representation-for-3d-point-clouds
https://arxiv.org/pdf/1612.00593.pdf
http://www.itzikbs.com/gaussian-mixture-model-gmm-3d-point-cloud-classification-primer
http://www.itzikbs.com/fisher-vector-for-3d-point-clouds-classification-primer
http://www.itzikbs.com/what-is-3d-modified-fisher-vector-3dmfv-representation-for-3d-point-clouds
https://arxiv.org/pdf/1711.08241.pdf

