

IT Services for Engineering

SCALE] IT-Solutions for CAE

• STRUCTURED DATA MANAGEMENT • AND HPC

More Efficient Simulations with SCALE.sdm and GNS Systems for OpenFOAM

10th OpenFOAM Conference | Marko Thiele (SCALE) | Christopher Woll (GNS Systems) | 8. November 2022

Copyright © 2022, GNS Systems GmbH. All rights reserved.

• GNS Systems – Who We Are

• SCALE - Who We Are

Agenda

• High Performance Computing and Simulation

• Short Presentation of Tasks and Results of GNS Systems Lego®* Model

SCALE.sdm for OpenFOAM

- Environment for End-to-End Simulation Data and Process Management
- Process Automation via CI/CD-Pipeline
- Conclusion

SCALE]

Located in Germany – Worldwide Service

GNS Systems

Proudly Serving Market Leading Companies in Automotive, Life Science, Manufacturing and Chemistry Since 1997

"Development of innovative functions, tools or services is based on the knowledge provided by automated process and data "

GNS Systems

 \bigcirc

 \bigcirc

IT for Virtual Engineering

for Value Added HPC and Big Compute

about 250 IT Specialists and Simulation Experts Worldwide

Broad Partner Network with Special Cloud Expertise

HPC Infrastructures & Workflows:

Complete automation of engineering processes - on-premises, hybrid or in the cloud

Dedicated Cloud Expertise:

Microsoft / AWS Partner

CAE/CAD Data Management & Analytics: The Intelligent Use of Data and smart Platform for Best Practises

Software Engineering:

Enterprise Class, Agile Software Development

SCALE

SCALE – Experts in Simulation Data Management

Product Portfolio Includes the System Solution SCALE.sdm

PRODUCTS

Standard software solutions for CAE process and data management

Requirements ► Modelling ► Solving ► Evaluation ► Monitoring

SCALE.project

SCALE.model

 \checkmark

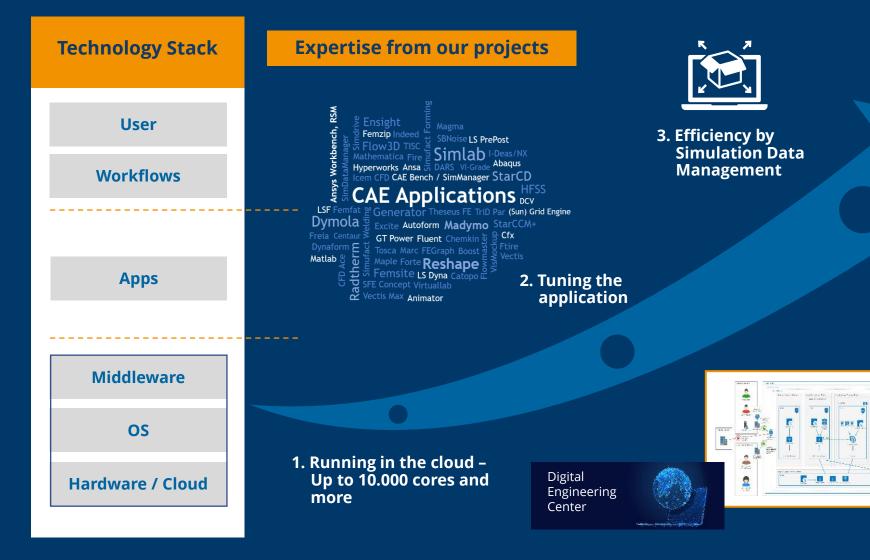
SERVICES

Individual software projects on customer order

- Requirement analysis
- Conceptual design, planning
- Specifications
- Implementation and project management
- Focus on IT projects related to simulation methods and processes

CONSULTING

- CAE-processes
- Machine Learning and Al-methods in CAE
- Introduction of SDM
- Software design



High Performance Computing and Simulation

Short Presentation of Tasks and Results of GNS Systems Lego®* Model

Improving OpenFOAM® on All Layers

We Want to Run OpenFOAM® at Its Best

Best fit solutions for industry needs

The Framework

Computing Infrastructure

- 🔥 Azure

Secure Remote Access

- VPN
- Data Encryption
- NiceDCV
- Terradici

Workstations

- NV6 Series with NVIDIA
- JGen
- Full software-stack (OpenFOAM, ParaView, MPI, ...)

Supercomputing

- HPC HB120 v3
- CPU: AMD EPYC 7V13
- 120 Cores/CPU
- 448 GB RAM
- local disk and central high-speed storage

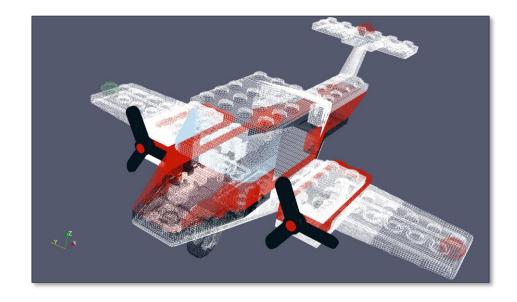
Empowerment

- Workflows
- Benchmarking
- Scaling

Create Our Lego®* Model

CAD | Pre-Processing | Meshing

Tasks:

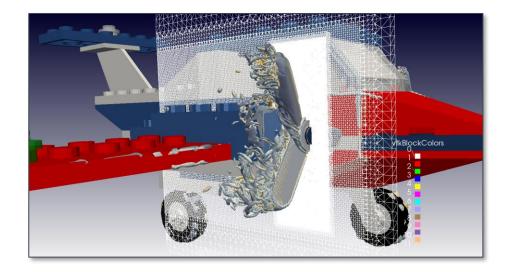


Pre-processing: Geometry Preparation

- Comparison and visualisation of Lego® model
- Brick-by-brick in a Lego® Creator Tool, each brick a solid
- Scale propeller to 95% (small gap between propeller and cabin)
- Quality checks of model

Meshing

- Various representations of CAD geometry
 → size 130 Mio. cells
- AMI interface around right and left propeller
- Multiple levels of refinement around aircraft geometry
- Define physical boundary areas
- CAD files are kept together with solver files



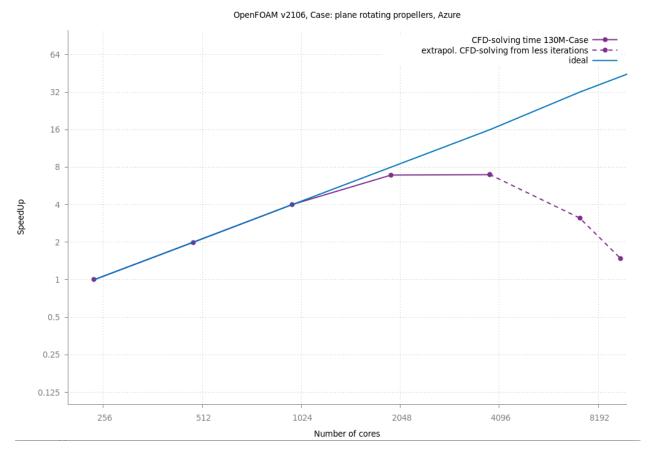
Create Our Lego®* Model

Solving | Post-Processing

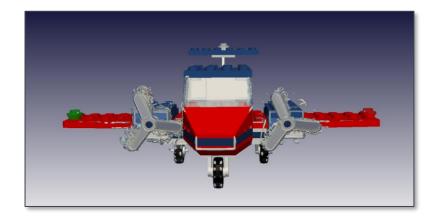
Tasks:

Solving

- Used up to ~10.000 Cores
 - 83 HB120 Azure Cloud nodes for the largest Job -> 9960 Cores
- Solver pimpleFoam: Adaptive timestep (~10⁻⁶ s, ~5000 timesteps, ~50 I/O-levels)
- Prepare result data for post-processing
 - e.g., OpenFOAM-functionObjects

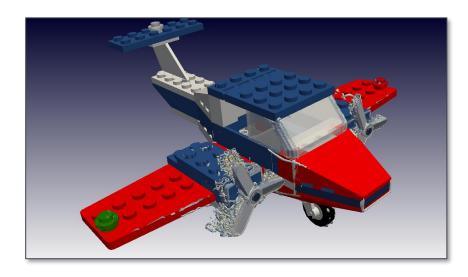

Post-processing

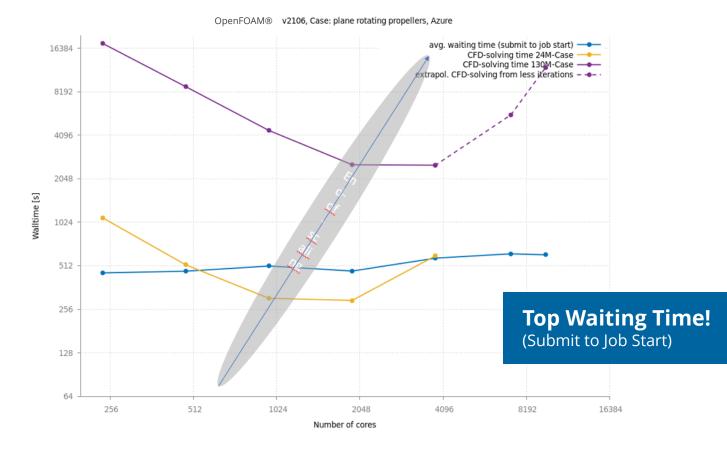
- Result files from solvers
- Deploy to the cloud environment: create the model visualisation
- Automated workflow helps manage large amounts of solver data efficiently
- Goal: Shorten the duration of the process


Reaching High Performance

With OpenFOAM® in the Cloud

SpeedUp


Unlimited Capacities in the Cloud



OpenFOAM® Automated Workflow

Maximum Performance Through Parallelisation

- ✓ Automated call of various OpenFOAM[®] tools
- Manage generated data from the solver optimally
- Pre-defined process efficiently distributes jobs to available clusters

Large Scale – Large Data – New Challenges

Used Data in Our Lego®* Model

lust **1 RUN** on **10.000 cores** produces ~2.6 TeraByte of data

What we have done:

We are still working on this: **Target Setup 400 Mio. cells**

# of I/O timesteps	Per process	ln total (10000 Cores)			# of I/O timesteps	Per process	ln total (10000 Cores)
1	5 MB	~50 GB	Depends on AMI size		1	15 MB	~150 GB
Mesh	2 MB	~20 GB			Mesh	6 MB	~60 GB
Field data	3 MB	~30 GB			Field data	9 MB	~90 GB
10	~35 MB	~520 GB			10	~0.16 GB	~1.6TB
50	~0.175 GB	~2.6 TB	•		50	~0.8 GB	~8 TB
(based on an "130M cel	ls" setup)				(extrapolated to the target size of 400M cells)		

* LEGO® is a trademark of the LEGO Group of companies which does not sponsor, authorize or endorse these investigations.

Data Management – a Dynamic Process ...

Target:

Identify valuable information and patterns from confusing mountains of data in order to profitably generate new business models from them.

SCALE]

Structured Data Management and HPC SCALE.sdm for OpenFOAM

Environment for End-to-End Simulation Data and Process Management

SCALE]

Simulation Data Management

SCALE.sdm → Software Solution for Simulation Data Management

SCALE.project

0

SCALE.model

SCALE.project Status.E

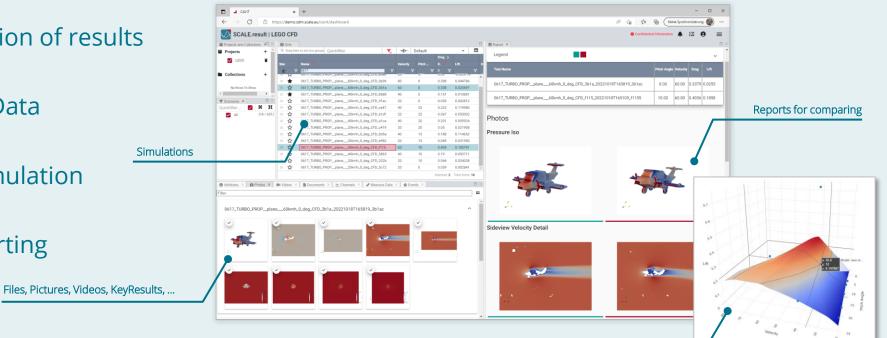
		8				
	△ · · · · · · · · · · · · · · · · · · ·	1) 🗙 🕂 Yaris (1946) 🗴 🖽 Admin 🗙			+ 4	
mount CAD or Machae	< > > ELEGO → 😭 locox_crush_the_brix → @ 615 (Update CFD Assembly Template] → CFD → Front Airstream Oxind → TURBO_PROP → 0*-100% overlap → ⇒ 0615_TURBO_PROP_plane_100kmk → C cars >>>					
mport CAD or Meshes	Browser	₽ ×	> Attributes	Properties	e ×	
1	Pool-Version: 615 🛛 🖬 🎝 🗸	7 ~				
				anterior		
\mathbf{V}	© 616 finally some edit action	1				
	615 Update CFD Assembly Template 0 614 Updated Scripts with old Turboprop		Pos			
)kanaka Madala	© 614 Opdated Scripts with the full bop op © 613 Updated CFD scripts	Short Description	Project	Ø 6687 Turbo Prop Ø550		Integration of CAD and
repare Models	612 Test replace Turboprob with flat plate			·	_d41f0a11.mpd	preprocessing tools
		plane	TURBO_PROP	Search		
	Ø 610 Test TURBO_PROP	MOCSCALECAR_front_wheels	SCALECAR	UUID	d41f0a11-215a-4b9a-b1c7-2ee88ef36cd3	
\mathbf{V}		76895Ferrari_F8_Tributo	FERRARI	Version	7	
•	Groups (Pool-Version: 615)	MOCSCALECAR_rear_wheels	SCALECAR	Initial Pool-Version	550	
	✓ ➡ CFD	6687_Turbo_Prop	TURBO_PROP	Date Created	6/22/22 5/54 DM 6687_Turbo_Prop0550	d41f0a11.mpg - LeoCAD - 0
efine Load Cases	> 🖻 0.orig	MOCMERCEDES_SLS_AMG	MERCEDES_SLS_A		View Piece Submodel Help	
	Pitch Angle	MOCFAKEMINI	FAKEMINI		🖩 りつく りご 混合, (《)》 🔑 📋 🕈 🌶 📼 🕨 🕂 🔁 Rofinario:	
	> 🖻 constant	MOCMERCEDES_SLS_AMG_rear_whe	MERCEDES_SLS_A	Live status		
	system blockMeshDict	velocities_front_wheels MOCRIVIAN_R1T	RIVIAN_R1T	Synchronized		Container Door and Window
	CRASH	MOCRIVIAN_RTT MOC - RIVIAN_RTT rear wheels	RIVIAN_R1T	Group		Starth Refts
	> 🖻 Tools	MOC - FAKEMINI frame	FAKEMINI	Component Type		
un Simulations	Runs (Pool-Version: 615)	7 velocities rear wheels		Properties History	All A	AB DOD
	> AUDI QUATTRO	MOCFAKEMINI_rear_wheels	FAKEMINI	Jobs		
	> DAVIDONE	768971985_Audi_Sport_quattro_S1_fr	. AUDI_QUATTRO	🗣 Filter		<u></u>
	> MERCEDES_SLS_AMG	768971985_Audi_Sport_quattro_S1	AUDI_QUATTRO	0016_MERCEDES_SLS_AN		
Open FOAM CFD case definition	> RIVIAN_R1T	768971985_Audi_Sport_quattro_S1_r	AUDI_QUATTRO	Waiting for Runner Servi		
	✓ TURBO_PROP ✓ 0° - 100% overlap	MOCDAVIDONE	DAVIDONE	> Oute_Mercedes_sts_At Simulation Job Portuge		
	⇒ 0615_TURB0_PROP_plane100kmh_0_deg_CFD_4198	MOCDAVIDONE_rear_wheels	DAVIDONE	0016_MERCEDES_SLS_AN		Pa. Properti Timeline Previ.
	9615_TURB0_PROP_plane100kmh_0_deg_CFD_6243	MOCDAVIDONE_front_wheels	DAVIDONE	Waiting for Runner Servi	27	Colors II
	⇒ 0615_TURB0_PROP_plane100kmh_0_deg_CFD_6e5a	MOCFAKEMINI_front_wheels	FAKEMINI	0016_MERCEDES_SLS_AN	0	
Load cases				60	0	00000
				Nº C	% 5 1	
					0000 $0000000000000000000000000000000$	

SCALE__

Simulation Data Management

SCALE.sdm → Software Solution for Simulation Data Management

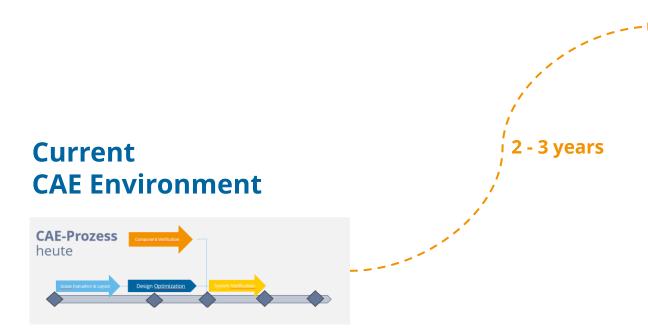
SCALE.project Status.E



SCALE.project Status.E

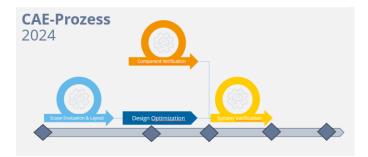
Extraction and Evaluation of results

Management of Post Data
Correlation Test vs Simulation
Assessment and Reporting



Data Analysis for many simulations

Process Automation via CI/CD-Pipeline


Outlook: What if...

... CAE Processes were Fully Automated?

- Manual executable
- Partly automated
- Traditional engineering workflow

Digital Engineering Environment

- Integration platform and deployment pipeline
- Fully automated workflows with reusable building blocks
- Traceable from/to product description
- Digital Twins maintenance and tracking

0

-0

Conclusion & Benefits

SCALE]

Conclusion & Benefits

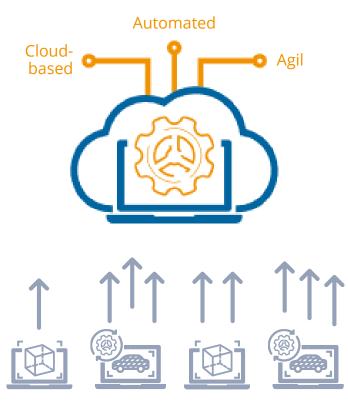
Structure Data Management & HPC-Automation for OpenFoam

Massive cost savings

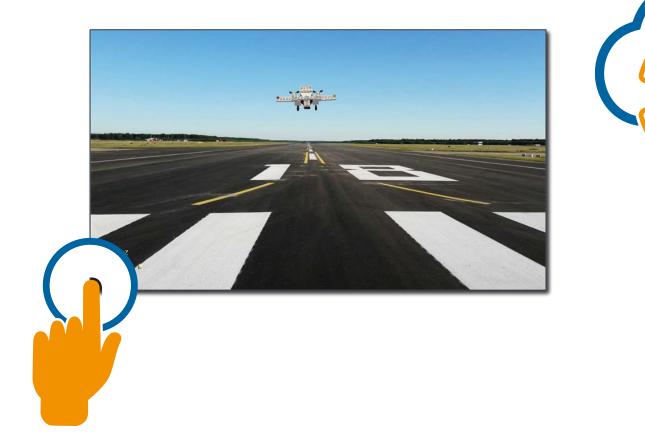
through simulation-driven virtual product development

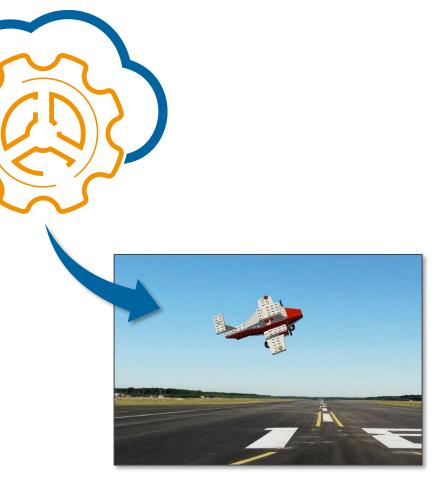
• Increased competitiveness through better products

Faster time-to-market


through automatization with SDM and massive parallelization in the cloud

Improved collaboration


through unified tools integrated in an SDM system and a common mindset across organizational boundaries


Standards & Compliance

in IT & Engineering Processes

THANKS FOR YOUR ATTENTION!

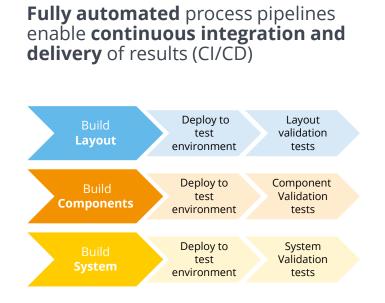
IT-Solutions for CAE

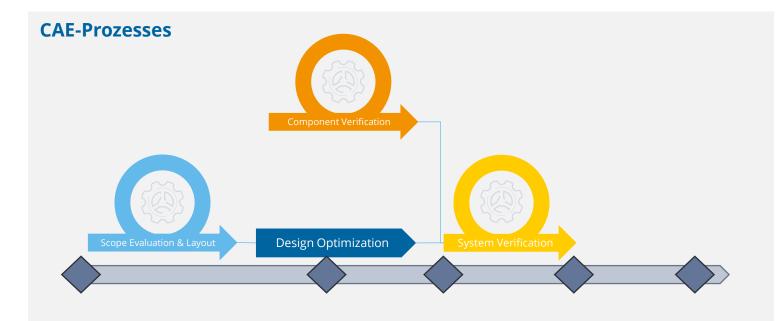
GNS Systems

IT Services for Engineering

Marko Thiele SCALE GmbH

E-Mail: Marko.Thiele@scale.eu www.scale.eu


Christopher Woll GNS Systems GmbH


E-Mail: Christopher.Woll@gns-systems.de www.gns-systems.de

CI/CD for the Digital Twin

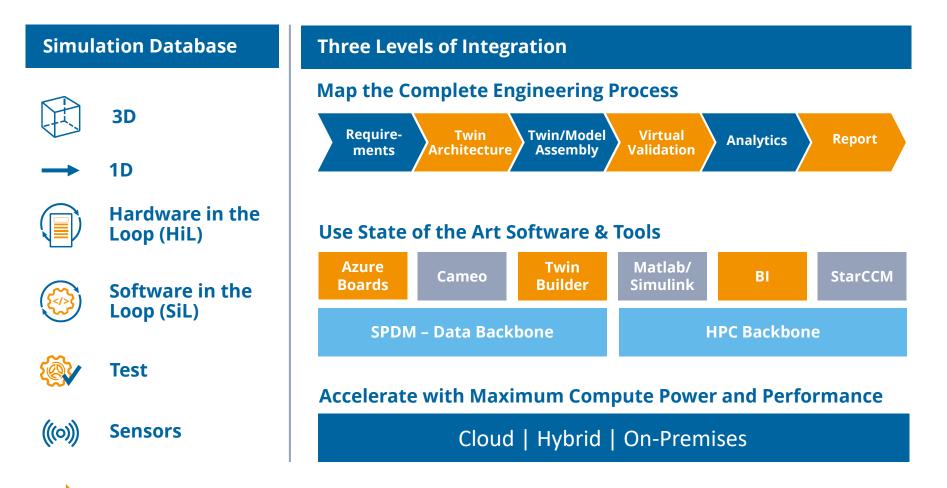
High-Level Architecture

Improve the Level of Automation in CAE Processes

- ✓ Maximum reduction of manual steps
- ✓ Achieve results faster through automated processes
- Continuous and seamless interaction of tools

CI/CD for the Digital Twin

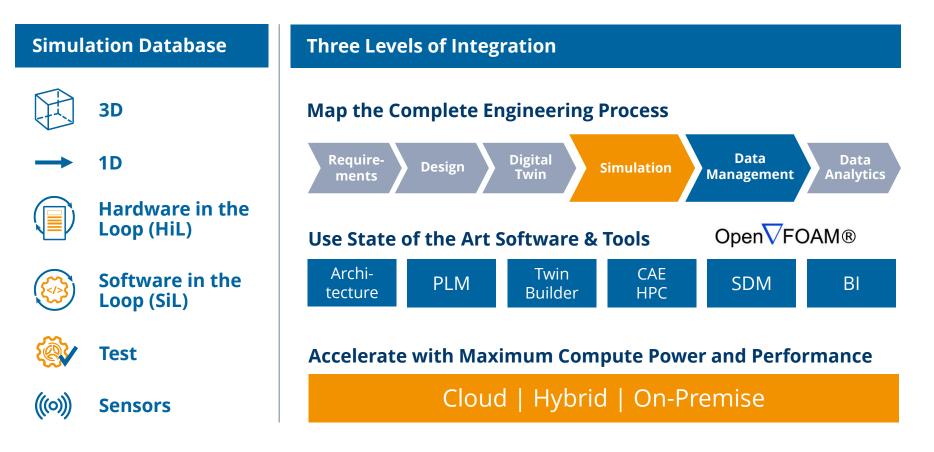
Building Blocks


For a Digital Engineering Ecosystem

Tools	Digital Twin Requirements Management: Digital Twin Architecture Management: Model/System Assembly (Twin Builder):	AzureBoards or Alternative Customer-decision Custom-made or Evaluation
Automation	Validation Pipelines: Workflow Management/Engine:	AzurePipelines or SPDM integrated JGen, Volta, BPM tools,
НРС	Supplementary HPC applications: Postprocessings:	Abaqus, Matlab/Simulink, GT Cool, FMI/FMU, Python CAE Apps, automatisiert
Data	Test Data Management and Evaluation: Simulation (Process) Data Management: CAEBench/SimManager, Interfaces for data access/exchange:	Customer-decision Minvera, SCALE.sdm, SimDataManager, Volta, Integrated with Data Management Solutions

CI/CD for the Digital Twin

Platform for Digital Engineering by GNS Systems


Your Multifunctional Digital Engineering Platform in Cloud, Hybrid and On-Premise

Digital Engineering Platform by GNS Systems

Your Multifunctional Digital Engineering Platform in Cloud and On-Premise

Get the most out of a wide range of simulation data in all product development processes