

Facilitating Virtual Testing at an Industrial Level by Simulation Data Management

The Future of Virtual Certification for Automotive Crash Safety

Bengaluru, India September 10, 2025

Marko Thiele¹, Alexandru Saharnean¹, Martin Liebscher¹, Harsh Sharma²

¹ SCALE GmbH, ²SCALESDM India Pvt. Ltd.

Far Side Occupant Test - Virtual Certification

- No physical tests by Euro NCAP
 - Replace physical tests by simulation
- OEM submits 8 simulation results:
 - 2 for model Validation
 - 6 for virtual testing (*VT*) or certification
- Euro NCAP checks data and accepts it
- OEM performs physical sled test
- Euro NCAP validates simulation model
- Euro NCAP rates virtual testing load cases

Far Side Occupant Test - Virtual Certification

- No physical tests by Euro NCAP
 - Replace physical tests by simulation
- **OEM submits 8 simulation results:**
 - 2 for model *Validation*
 - 6 for virtual testing (VT) or certification
- Euro NCAP checks data and accepts it
- OEM performs physical sled test
- Euro NCAP validates simulation model
- Euro NCAP rates virtual testing load cases
- CAE Engineer needs and objectives
 - Data preparation and completeness
 - Euro NCAP quality criteria
 - Static model parts
 - Rating values

Virtual Testing Workflow and Challenges

OEM E

physical sled tests

Euro NCAP
Validates
simulation model

Euro NCAP Rates VT load

OEM must provide 8 simulation results:

- 115 mandatory curves, multiple key values, 6 mandatory videos
- Mandatory unchanged model parts "static model parts"
- quality conditions (energy, mass, computation time ratios)

OEM goals

- Successful model check and validation
- Good rating values

OEM own requirements for the workflow (iterative process):

- Precise documentation and traceability
- Automated result preparation
- Automated checks

How Simulation Data Management (SDM) Can Help

- Single point of truth for input and output, simulation and tests
- Collaboration teamwork, sharing of data, speedup of development
- Standardized data structure homogeneous visualization, evaluation, assessment
- Predictable & robust assessment automatic generation of hashes, extraction of key-results, reports
- Traceability and documentation each change by each user is captured and documented

Setup in SDM: Requirements

- Project setup in SCALE.sdm
 - Responsibilities
 - Milestones
 - Requirements
 thresholds for measurements
- Quantity and quality criteria for Euro NCAP assuring the quality of the simulation result data
 - Energy of dummy and whole system
 - Added mass
 - Simulation run time
 - Reasonable displacements
- Rating criteria for Euro NCAP

used everywhere for coloring in order to always have an eye on the critical values for the rating

- Accelerations
- Forces
- Displacements

Thresholds for quality criteria

Thresholds for EuroNCAP rating criteria

 6.3 Table 7.: EuroNCAP VTC 	(10)		
	•	Head a3ms	$-\infty \le x < 80.00 \qquad \qquad 80.00 \le x < \infty$
	•	Abdomen compression	$0.000 \le x < 65.00 \qquad \qquad 65.00 \le x < \infty$
	•	Chest compression	$0.000 \le x < 50.00 \qquad \qquad 50.00 \le x < \infty$
	•	Head excursion	$0.000 \le x < 80.00 \qquad 80.00 \le x < \infty$
	•	Head HIC (15 ms)	$-\infty \le x < 700.0 \qquad \boxed{700.0 \le x < \infty}$
	•	Lumbar Fy	$0.000 \le x < 2.000$ 2.000 $\le x < \infty$
	•	Lumbar Fz	$0.000 \le x < 3.500$ 3.500 $\le x < \infty$
	•	Lumbar Mx	$0.000 \le x < 120.0$ 120.0 $\le x < \infty$
	•	Pubic symphysis force	$0.000 \le x < 2.800$ 2.800 $\le x < \infty$
	•	Neck moment y	$0.000 \le x < 50.00 \qquad \qquad 50.00 \le x < \infty$

Check

Results

- Modular structure version control, parametrization imported, versioned, managed
- Shared data among users and load cases includes, parameters, ...
- **Parameterization** restraint system parameters
- Attribute based load case definition more efficient alternative to a matrix-based approach

HPC

Documentation

any change can be documented in much detail with text, images, documents, Al generated description

Traceability

each change is automatically captured and can be traced any time later

Collaboration

anyone in the team can see and access every change of other team members

Model Setup HPC Submit

Check Results Check Ratings Export Upload

- "static model parts" needed
 - Proof that certain data of the model has not changed with respect to the validation models
- Format of "static model parts"

disassembled into groups to allow teamwork

- Should work for only some lines
- Entities that are allowed to change with respect to Euro NCAP
 - Crash pulses for sled acceleration
 - Nodes of dummy & seat
- Advantage of setup in SDM

automation, consistency, efficiency

- Automatic calculation of hashes upon assembly
- Integration of hashes in reports for assessment
- Integrated in job-submit and carried out for each simulation

Solving: simulation time 0.053999 of 0.2 computed (Energy Info after 5) Job Folder Log

Scheduler-Information: Submitted Job 56462

> 🔅 Solving job

- Interactive web report
 - Runs everywhere in any web browser
 - Select simulations
 - Compare on the fly
- Access to all simulations & tests
 - Search
 - Filter
- Custom reports
 - Access to all data of selected simulations
 - Tables with key results
 - Colored assessments from defined requirements
 - Channel plotter
 - Synchronous video playback

Model Setup HPC Submit

Check Results Check Ratings Export Upload

Quality criteria for Euro NCAP

compare for each selected simulation

- Hourglass Energy of WSID Dummy & full Setup
- Added Mass
- Displacements of Dummy

Summary of "static model parts"
 compare to validation simulation and see instantly

where are unintended changes

- 1st column the reference simulation (from validation)
- Subsequent columns from other simulations of other load cases

Quality Criteria for EuroNCAP				
Result	Limit			
Full Setup - Maximum Hourglass Energy < 10% of Maximum Internal Energy	≤ 0.1	0.01943	0.01871	0.001888
WSID Dummy - Maximum Hourglass Energy < 10% of Maximum Internal Energy	≤ 0.1	0.02882	0.02759	0.005757
Maximum Added Mass (%) < Total Model Mass at the beginning of the simulation	≤ 0.005	5.016e-4	5.016e-4	5.016e-4
Z Displacement (mm) in the first 5 ms of the simulation	≤ 10	4.2	4.2	
(Time of Maximum Head Y Displacement) + 20% < Simulation Time	≥ 1.2	1.5	1.5	
Number of Mandatory Channels	115	115	115	61
Number of Mandatory Videos	6	6	6	6

Validation of Static Model Parts				
Part	•	•		
carpet part 1	30321	30321	30321	
carpet part 2	1817a	1817a	1817a	
biw column (full)	de3eb	de3eb	de3eb	
biw hwac (full)	bc2df	bc2df	bc2df	
biw ip03 (full)	1c29f	1c29f	1c29f	
biw pedals (full)	083d7	083d7	083d7	
sled part 1	51d71	51d71	51d71	
sled part 2	88c9c	88c9c	88c9c	
contact_05 (full)	d86e2	d86e2	d86e2	
control_02	36e3e	36e3e	36e3e	
dummy content 1	1670a	9592a	1670a	
dummy content 2	5414c	5414c	5414c	
seat part 1	813c9	813c9	813c9	
seat part 2	3ca67	3ca67	3ca67	
seat belt content	61b01	61b01	61b01	
seat belt part 2	df543	467cf	df543	

Rating criteria for Euro NCAP

compare for each selected simulation see instantly where are still problems

- Accelerations
- Forces
- Displacements
- •

Channel plotter

inspect and compare all channel data from selected simulations

- Interactively select and deselect simulations
- Choose location, parameter and axis to be displayed

Video player

inspect and compare all videos from selected simulations

- Synchronously play videos side by side to compare load cases
- Inspect videos frame by frame with common slider for all videos

	Assessment Criterion	Limit			
	HIC15	≤ 700	169	33.67	143.8
	A3ms	≤ 80	43.31 G	23.76 G	41.9 G
	Upper Neck Fz	≤ 3.74	0.296 kN	0.465 kN	0.192 kN
	Upper Neck MxOC	≤ 248	21.9608 N m	142.298 N m	24.4736 N m
	Upper Neck MyOC	≤ 50	22.7058 N m	46.3669 N m	14.2845 N m
	Lower Neck Fz	≤ 3.74	0.154 kN	0.054 kN	0.115 kN
	Lower Neck Mx(base of neck)	≤ 248	6.24678 N m	0.496497 N m	4.60146 N m
	Lower Neck My(base of neck)	≤ 700	11.7259 N m	7.50386 N m	5.74929 N m
	Chest compression	≤ 50	0.0	0.0	0.0
	Abdomen compression	≤ 65	0.0	0.0	0.0
	Pubic Symphysis force	≤ 2.8	0.0	0.0	0.0
	Lumbar Fy	≤2	0.423 kN	2.07 kN	0.404 kN
	Lumbar Fz	≤ 3.5	0.126 kN	1.01 kN	0.106 kN
	Lumbar Mx	≤ 120	5.95886 N m	120.588 N m	8.51914 N m
	Head excursion	≤ 80	44.3 mm	45.8 mm	45.6 mm
Location	Parameter	Axi	is		

y [3]

Safeguarding against data manipulation

- Signing instead of hash
 - Would allow to proof that a given input was used to create a specific output (simulation result)
 - "static model parts" of OEMs would not need to be disclosed to testing authority

Problems

- Signatures cannot proof that "static model parts" do not contain any model data that is somehow tampering the simulation results in 1st place
- All output needs to be signed, and it would be probably best if the output complies to the requirements of Euro NCAP (e.g. channels and key results already in ISO-MME)
- Need to be implemented by developers of solvers

Summary and Outlook

- Virtual Testing workflow at an industrial level
 - High complexity in the CAE world (model, load cases, processes)
 - Virtual testing adds to the complexity
 - Tools for efficient data and process management required for a productive usage
- Using an SDM-System for the Virtual Testing use cases
 - Efficient integration of the iterative development process
 - Version control, traceability and documentation
 - Automated result data preparation and checks
- Challenges & Outlook:
 - Safeguarding against malevolent data manipulation
 - Mechanisms on the FEM solvers side mandatory but not sufficient

SO LONG, AND THANKS

FOR ALL THE FISH

© 2022 Copyright by SCALE GmbH, DYNAmore GmbH

 ${\sf LEGO@}$ is a trademark of the LEGO Group of companies which does not sponsor, authorize or endorse these investigations.

